Online sparse IR background estimation via KRLS

Bin Zhu*, Zhengdong Cheng, Xiang Fan, Huachun Tan

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Background estimation is the first step of background suppression in many infrared (IR) target detection algorithms. One sort of these algorithms consider background estimation as a supervised learning problem. On this point of view, it is necessary to search sparse solutions to control the complexity of the learned function to achieve good generalization. On the other hand, the more effective nonlinear regression algorithms are computationally demanding, so it is required to operate online. In this paper, a nonlinear online IR image background estimation algorithm based on sparse Kernel Recursive Least Squares (KRLS) is proposed. Nonlinear function regression and real IR image data experiments are performed; the results of these experiments are compared to that of original Least Squares (LS), 2-D Least Mean Squares (TDLMS) and the kernel version of LS (KLS) algorithm. The feasibility of nonlinear function regression and background estimation via this algorithm is thus demonstrated.

源语言英语
主期刊名2010 IEEE International Conference on Information and Automation, ICIA 2010
1123-1127
页数5
DOI
出版状态已出版 - 2010
活动2010 IEEE International Conference on Information and Automation, ICIA 2010 - Harbin, Heilongjiang, 中国
期限: 20 6月 201023 6月 2010

出版系列

姓名2010 IEEE International Conference on Information and Automation, ICIA 2010

会议

会议2010 IEEE International Conference on Information and Automation, ICIA 2010
国家/地区中国
Harbin, Heilongjiang
时期20/06/1023/06/10

指纹

探究 'Online sparse IR background estimation via KRLS' 的科研主题。它们共同构成独一无二的指纹。

引用此