TY - GEN
T1 - OneRel
T2 - 36th AAAI Conference on Artificial Intelligence, AAAI 2022
AU - Shang, Yu Ming
AU - Huang, Heyan
AU - Mao, Xian Ling
N1 - Publisher Copyright:
Copyright © 2022, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2022/6/30
Y1 - 2022/6/30
N2 - Joint entity and relation extraction is an essential task in natural language processing and knowledge graph construction. Existing approaches usually decompose the joint extraction task into several basic modules or processing steps to make it easy to conduct. However, such a paradigm ignores the fact that the three elements of a triple are interdependent and indivisible. Therefore, previous joint methods suffer from the problems of cascading errors and redundant information. To address these issues, in this paper, we propose a novel joint entity and relation extraction model, named OneRel, which casts joint extraction as a fine-grained triple classification problem. Specifically, our model consists of a scoring-based classifier and a relation-specific horns tagging strategy. The former evaluates whether a token pair and a relation belong to a factual triple. The latter ensures a simple but effective decoding process. Extensive experimental results on two widely used datasets demonstrate that the proposed method performs better than the state-of-the-art baselines, and delivers consistent performance gain on complex scenarios of various overlapping patterns and multiple triples.
AB - Joint entity and relation extraction is an essential task in natural language processing and knowledge graph construction. Existing approaches usually decompose the joint extraction task into several basic modules or processing steps to make it easy to conduct. However, such a paradigm ignores the fact that the three elements of a triple are interdependent and indivisible. Therefore, previous joint methods suffer from the problems of cascading errors and redundant information. To address these issues, in this paper, we propose a novel joint entity and relation extraction model, named OneRel, which casts joint extraction as a fine-grained triple classification problem. Specifically, our model consists of a scoring-based classifier and a relation-specific horns tagging strategy. The former evaluates whether a token pair and a relation belong to a factual triple. The latter ensures a simple but effective decoding process. Extensive experimental results on two widely used datasets demonstrate that the proposed method performs better than the state-of-the-art baselines, and delivers consistent performance gain on complex scenarios of various overlapping patterns and multiple triples.
UR - http://www.scopus.com/inward/record.url?scp=85146095377&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85146095377
T3 - Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
SP - 11285
EP - 11293
BT - AAAI-22 Technical Tracks 10
PB - Association for the Advancement of Artificial Intelligence
Y2 - 22 February 2022 through 1 March 2022
ER -