On parameter estimation of autoregressive process in the presence of noise

L. J. Jia, C. Z. Jin, Z. J. Yang, K. Wada

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)

摘要

The paper studies the problem of parameter estimation for autoregressive (AR) process in the presence of white observation noise. A new type of bias compensated least-square (BCLS) algorithm is proposed to obtain consistent parameter estimate for AR models. The main feature of the proposed algorithm is that an auxiliary backward output parameter estimator is introduced in order to estimate the variance of observation noise. The proposed algorithm compensates the bias via the estimated variance of observation noise and hence yields a consistent parameter estimate. Some comments are given to illustrate that the proposed algorithm is less computational burden and more mimetically reliable. Numerical results are provided to support these comments.

源语言英语
页(从-至)185-190
页数6
期刊Research Reports on Information Science and Electrical Engineering of Kyushu University
6
2
出版状态已出版 - 9月 2001

指纹

探究 'On parameter estimation of autoregressive process in the presence of noise' 的科研主题。它们共同构成独一无二的指纹。

引用此