On-line identification of fuel cell model with variable neural network

Peng Li*, Jie Chen, Tao Cai, Guoping Liu, Peng Li*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

It is important to predict fuel cells' behaviors for fuel cell control, power management and other practical applications. In this paper, a Gaussian radial basis function (GRBF) variable neural network is used to on-line identify the PEM (Polymer Electrolyte Membrane) fuel cell model. The structure of the neural network changes over time according to the required accuracy and complexity. Finally, a real test data of fuel cell power system is used to illustrate the effectiveness of the variable neural network for online identification of the fuel cell model. The result shows that this method guarantees the output of the predictive model attains the required accuracy.

源语言英语
主期刊名Proceedings of the 29th Chinese Control Conference, CCC'10
1417-1421
页数5
出版状态已出版 - 2010
活动29th Chinese Control Conference, CCC'10 - Beijing, 中国
期限: 29 7月 201031 7月 2010

出版系列

姓名Proceedings of the 29th Chinese Control Conference, CCC'10

会议

会议29th Chinese Control Conference, CCC'10
国家/地区中国
Beijing
时期29/07/1031/07/10

指纹

探究 'On-line identification of fuel cell model with variable neural network' 的科研主题。它们共同构成独一无二的指纹。

引用此