摘要
In this paper, we study a fractional-order variant of the asymptotical regularization method, called Fractional Asymptotical Regularization (FAR), for solving linear ill-posed operator equations in a Hilbert space setting. We assign the method to the general linear regularization schema and prove that under certain smoothness assumptions, FAR with fractional order in the range (1, 2) yields an acceleration with respect to comparable order optimal regularization methods. Based on the one-step Adams-Moulton method, a novel iterative regularization scheme is developed for the numerical realization of FAR. Two numerical examples are given to show the accuracy and the acceleration effect of FAR.
源语言 | 英语 |
---|---|
页(从-至) | 699-721 |
页数 | 23 |
期刊 | Fractional Calculus and Applied Analysis |
卷 | 22 |
期 | 3 |
DOI | |
出版状态 | 已出版 - 26 6月 2019 |
已对外发布 | 是 |
指纹
探究 'On fractional asymptotical regularization of linear ill-posed problems in hilbert spaces' 的科研主题。它们共同构成独一无二的指纹。引用此
Zhang, Y., & Hofmann, B. (2019). On fractional asymptotical regularization of linear ill-posed problems in hilbert spaces. Fractional Calculus and Applied Analysis, 22(3), 699-721. https://doi.org/10.1515/fca-2019-0039