On f-edge cover-coloring of simple graphs

Wang Jihui*, Zhang Sumei, Hou Jianfeng

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

Let G(V, E) be a simple graph, and let f be an integer function on V with 1 ≤ f(v) ≤ d(v) to each vertex v ε V. An f-edge cover-coloring of a graph G is a coloring of edge set E such that each color appears at each vertex v ε V at least f(v) times. The f-edge cover chromatic index of G, denoted by χ′fc(G), is the maximum number of colors such that an f-edge cover-coloring of G exists. Any simple graph G has f-edge cover chromatic index equal to δf or δf-1, where δf = min vεV{[d(v/f(v]}. If χ′fc(G) = δf, then G is of Cf I class; otherwise G is of Cf II class. In this paper, we give some sufficient conditions for a graph to be of Cf I class, and discuss the classification problem of complete graphs on f-edge cover-coloring.

源语言英语
主期刊名Computational Science - ICCS 2007 - 7th International Conference, Proceedings
448-452
页数5
版本PART 3
出版状态已出版 - 2007
已对外发布
活动7th International Conference on Computational Science, ICCS 2007 - Beijing, 中国
期限: 27 5月 200730 5月 2007

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
编号PART 3
4489 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议7th International Conference on Computational Science, ICCS 2007
国家/地区中国
Beijing
时期27/05/0730/05/07

指纹

探究 'On f-edge cover-coloring of simple graphs' 的科研主题。它们共同构成独一无二的指纹。

引用此