TY - GEN
T1 - On deep unsupervised active learning
AU - Li, Changsheng
AU - Ma, Handong
AU - Kang, Zhao
AU - Yuan, Ye
AU - Zhang, Xiao Yu
AU - Wang, Guoren
N1 - Publisher Copyright:
© 2020 Inst. Sci. inf., Univ. Defence in Belgrade. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Unsupervised active learning has attracted increasing attention in recent years, where its goal is to select representative samples in an unsupervised setting for human annotating. Most existing works are based on shallow linear models by assuming that each sample can be well approximated by the span (i.e., the set of all linear combinations) of certain selected samples, and then take these selected samples as representative ones to label. However, in practice, the data do not necessarily conform to linear models, and how to model nonlinearity of data often becomes the key point to success. In this paper, we present a novel Deep neural network framework for Unsupervised Active Learning, called DUAL. DUAL can explicitly learn a nonlinear embedding to map each input into a latent space through an encoder-decoder architecture, and introduce a selection block to select representative samples in the the learnt latent space. In the selection block, DUAL considers to simultaneously preserve the whole input patterns as well as the cluster structure of data. Extensive experiments are performed on six publicly available datasets, and experimental results clearly demonstrate the efficacy of our method, compared with state-of-the-arts.
AB - Unsupervised active learning has attracted increasing attention in recent years, where its goal is to select representative samples in an unsupervised setting for human annotating. Most existing works are based on shallow linear models by assuming that each sample can be well approximated by the span (i.e., the set of all linear combinations) of certain selected samples, and then take these selected samples as representative ones to label. However, in practice, the data do not necessarily conform to linear models, and how to model nonlinearity of data often becomes the key point to success. In this paper, we present a novel Deep neural network framework for Unsupervised Active Learning, called DUAL. DUAL can explicitly learn a nonlinear embedding to map each input into a latent space through an encoder-decoder architecture, and introduce a selection block to select representative samples in the the learnt latent space. In the selection block, DUAL considers to simultaneously preserve the whole input patterns as well as the cluster structure of data. Extensive experiments are performed on six publicly available datasets, and experimental results clearly demonstrate the efficacy of our method, compared with state-of-the-arts.
UR - http://www.scopus.com/inward/record.url?scp=85097328629&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85097328629
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 2626
EP - 2632
BT - Proceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
A2 - Bessiere, Christian
PB - International Joint Conferences on Artificial Intelligence
T2 - 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Y2 - 1 January 2021
ER -