On Convergence of the Partially Randomized Extended Kaczmarz Method

Wen Ting Wu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 5
  • Captures
    • Readers: 2
see details

摘要

To complete the convergence theory of the partially randomized extended Kaczmarz method for solving large inconsistent systems of linear equations, we give its convergence theorem whether the coefficient matrix is of full rank or not, tall or flat. This convergence theorem also modifies the existing upper bound for the expected solution error of the partially randomized extended Kaczmarz method when the coefficient matrix is tall and of full column rank. Numerical experiments show that the partially randomized extended Kaczmarz method is convergent when the tall or flat coefficient matrix is rank deficient, and can also converge faster than the randomized extended Kaczmarz method.

源语言英语
页(从-至)435-448
页数14
期刊East Asian Journal on Applied Mathematics
12
2
DOI
出版状态已出版 - 2021

指纹

探究 'On Convergence of the Partially Randomized Extended Kaczmarz Method' 的科研主题。它们共同构成独一无二的指纹。

引用此

Wu, W. T. (2021). On Convergence of the Partially Randomized Extended Kaczmarz Method. East Asian Journal on Applied Mathematics, 12(2), 435-448. https://doi.org/10.4208/eajam.290921.240122