Observation and verification of surface electrical explosion driven by radial-distributed pulsed current in laboratory lightning strike test

Ruoyu Han*, Yuchen Cao, Yakun Liu*, Xi Chen, Ting Li, Chen Li, Pengfei Li

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

The laboratory lightning test is essential for assessing the effectiveness of lightning strike protection (LSP). Particularly, direct lightning strike damage can be performed with pulsed current injection into the specimen. This paper focuses on the dynamic process of arc plasma and shock wave behaviour in the vicinity of the ‘strike’ point. A rod-plate discharge load is built for testing aluminium and coated plate under 40-kA-level pulsed current. The visualisation of the luminous discharge plasma and its flow field via high-speed photography (from different angles) is meticulously designed and implemented, synchronised with electro-physical diagnostics. The results indicate some new mechanisms for lightning strike damage, apart from the impulse heat loading from the thermal arc. The transient current injection through the arc root concentrates on a thin skin layer (skin-depth effect), with the radial-attenuated current density, driving asynchronously electrical explosions on the plate surface. The inhomogeneous Joule heating of the plate leads to outwardly propagating phase transition and shock wave along the conductive surface. In addition, the electro-thermal instability is observed and regarded as the seed of irregular erosion region. Spectroscopic information reveals two different plasma states of main discharge arc channel and adjacent surface electrical explosion. The correspondence of the physical mechanism of electrical explosion and optical radiation is established. Microscopic images for different regions depict erosion characteristics and summarise influencing factors, further confirming the mechanism above. The research clarifies the role of skin-depth effect in transaction arc erosion for electrode, complements the electrical explosion theory with unevenly distributed current and helps optimise strategies of LSP.

源语言英语
页(从-至)137-149
页数13
期刊High Voltage
9
1
DOI
出版状态已出版 - 2月 2024

指纹

探究 'Observation and verification of surface electrical explosion driven by radial-distributed pulsed current in laboratory lightning strike test' 的科研主题。它们共同构成独一无二的指纹。

引用此