TY - GEN
T1 - NVH optimization of vehicle powertrain
AU - Lu, Shouwei
AU - Feng, Huihua
AU - Zuo, Zhengxing
AU - Kang, Liyun
AU - Yu, Bo
PY - 2013
Y1 - 2013
N2 - The noise and vibration performance of powertrain is main contributor for vehicle NVH (Noise, Vibration and Harshness) issue. To achieve better NVH performance, it is critical to conduct NVH optimization during the powertrain initial design stage. This paper presents an investigation of optimize vehicle powertrain NVH performance via modification of excitation-radiation system of powertrain. To minimize excitation force of the gearbox with special focus on gear pair dynamic characteristics via the gear profile modification, and to reduce transmission housing noise radiation via enhance its stiffness, are the main objective of optimization. The excitation forces are analyzed by Multi Body Dynamics (MBD) method, considering different excitation mechanisms of the powertrain. The vibro-acoustic behavior of powertrain is obtained by FEM/BEM coupled analysis. The acoustic transfer vector (ATV) calculation is used to predict the powertrain sound power level (SPL) and panel contributions. Based on the acquired NVH data of the powertrain, the optimization which couples the transmission gear profile modification for attenuating gear system excitation and the structure stiffness modification for reducing transmission housing noise radiation is proposed. Experiment validation is conducted in order to evaluate the modified results. The evaluation shows that the optimization can effectively reduce powertrain noise and vibration.
AB - The noise and vibration performance of powertrain is main contributor for vehicle NVH (Noise, Vibration and Harshness) issue. To achieve better NVH performance, it is critical to conduct NVH optimization during the powertrain initial design stage. This paper presents an investigation of optimize vehicle powertrain NVH performance via modification of excitation-radiation system of powertrain. To minimize excitation force of the gearbox with special focus on gear pair dynamic characteristics via the gear profile modification, and to reduce transmission housing noise radiation via enhance its stiffness, are the main objective of optimization. The excitation forces are analyzed by Multi Body Dynamics (MBD) method, considering different excitation mechanisms of the powertrain. The vibro-acoustic behavior of powertrain is obtained by FEM/BEM coupled analysis. The acoustic transfer vector (ATV) calculation is used to predict the powertrain sound power level (SPL) and panel contributions. Based on the acquired NVH data of the powertrain, the optimization which couples the transmission gear profile modification for attenuating gear system excitation and the structure stiffness modification for reducing transmission housing noise radiation is proposed. Experiment validation is conducted in order to evaluate the modified results. The evaluation shows that the optimization can effectively reduce powertrain noise and vibration.
KW - NVH
KW - Powertrain
KW - Profile modification
KW - Transmission
UR - http://www.scopus.com/inward/record.url?scp=84869413539&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-33832-8_11
DO - 10.1007/978-3-642-33832-8_11
M3 - Conference contribution
AN - SCOPUS:84869413539
SN - 9783642338311
T3 - Lecture Notes in Electrical Engineering
SP - 141
EP - 149
BT - Proceedings of the FISITA 2012 World Automotive Congress
T2 - FISITA 2012 World Automotive Congress
Y2 - 27 November 2012 through 30 November 2012
ER -