TY - CONF
T1 - Numerical simulation of two-dimensional detonation propagation in partially pre-vaporized n-heptane sprays
AU - Zhao, Majie
AU - Zhang, Huangwei
N1 - Publisher Copyright:
© 2021 ICLASS 2021 - 15th Triennial International Conference on Liquid Atomization and Spray Systems. All Rights Reserved.
PY - 2021/8/31
Y1 - 2021/8/31
N2 - In this paper, two-dimensional detonation propagation in partially pre-vaporized n-heptane sprays is studied by using Eulerian–Lagrangian methods. The effects of droplet pre-evaporation on the detonation propagation are investigated. The general features and detailed structures of two-phase detonations are well captured with the present numerical methods. The results show that the detonation propagation speed and detonation structures are significantly affected by the pre-evaporated gas equivalence ratio. The numerical soot foils are used to characterize the influence of pre-evaporated gas equivalence ratio on the detonation propagation. Regular detonation cellular structures are observed for large pre-evaporated gas equivalence ratios, but when decreasing the pre-evaporated gas equivalence ratio, the detonation cellular structures become much more unstable and the average cell width also increases. It is also found that the pre-evaporated gas equivalence ratio has little effects on the volume averaged heat release when the detonation propagates stably. Moreover, the results also suggest that the detonation can propagate in the two-phase n-heptane/air mixture without pre-evaporation, but the detonation would be first quenched and then re-ignited when the pre-evaporated gas equivalence ratio is small or equal to zero.
AB - In this paper, two-dimensional detonation propagation in partially pre-vaporized n-heptane sprays is studied by using Eulerian–Lagrangian methods. The effects of droplet pre-evaporation on the detonation propagation are investigated. The general features and detailed structures of two-phase detonations are well captured with the present numerical methods. The results show that the detonation propagation speed and detonation structures are significantly affected by the pre-evaporated gas equivalence ratio. The numerical soot foils are used to characterize the influence of pre-evaporated gas equivalence ratio on the detonation propagation. Regular detonation cellular structures are observed for large pre-evaporated gas equivalence ratios, but when decreasing the pre-evaporated gas equivalence ratio, the detonation cellular structures become much more unstable and the average cell width also increases. It is also found that the pre-evaporated gas equivalence ratio has little effects on the volume averaged heat release when the detonation propagates stably. Moreover, the results also suggest that the detonation can propagate in the two-phase n-heptane/air mixture without pre-evaporation, but the detonation would be first quenched and then re-ignited when the pre-evaporated gas equivalence ratio is small or equal to zero.
KW - Eulerian-Lagrangian
KW - Two-phase detonation
KW - n-heptane
UR - http://www.scopus.com/inward/record.url?scp=85177470368&partnerID=8YFLogxK
M3 - Paper
AN - SCOPUS:85177470368
T2 - 15th Triennial International Conference on Liquid Atomization and Spray Systems, ICLASS 2021
Y2 - 29 August 2021 through 2 September 2021
ER -