TY - JOUR
T1 - Numerical simulation of human body injury mechanism under multi-angle shock wave
AU - Geng, Jing
AU - Gu, Yin
AU - Wu, Jialin
AU - Yuan, Mengqi
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2023
Y1 - 2023
N2 - To study the human body injuries caused by blast waves, finite element models of the human chest composed of muscles, bones, and organs based on CT flat maps of adult males, are established in this study. Then a shock wave damage model which consists of explosives, air domain, and a human body is built to simulate the damage of 200 g TNT on human models at different distances (110, 160, and 200 cm). The maximum chest wall velocity is used as the injury criterion to study the damage to humans from different angles (0°, 45°, 75°, 90°) at the same distance. The results indicate that the damage to the human body caused by shock waves is associated with distance and angle. The worst injury occurs when the impact direction is normal to the human, while the lightest injury happens when the impact angle is 45 degrees, a 15 percent decrease from the worst. The response of each organ part is related to its mechanical properties, structure, and location. The results could provide a reference to the development of individual protection from shock waves.
AB - To study the human body injuries caused by blast waves, finite element models of the human chest composed of muscles, bones, and organs based on CT flat maps of adult males, are established in this study. Then a shock wave damage model which consists of explosives, air domain, and a human body is built to simulate the damage of 200 g TNT on human models at different distances (110, 160, and 200 cm). The maximum chest wall velocity is used as the injury criterion to study the damage to humans from different angles (0°, 45°, 75°, 90°) at the same distance. The results indicate that the damage to the human body caused by shock waves is associated with distance and angle. The worst injury occurs when the impact direction is normal to the human, while the lightest injury happens when the impact angle is 45 degrees, a 15 percent decrease from the worst. The response of each organ part is related to its mechanical properties, structure, and location. The results could provide a reference to the development of individual protection from shock waves.
UR - http://www.scopus.com/inward/record.url?scp=85166732497&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/2478/12/122044
DO - 10.1088/1742-6596/2478/12/122044
M3 - Conference article
AN - SCOPUS:85166732497
SN - 1742-6588
VL - 2478
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 12
M1 - 122044
T2 - 3rd International Conference on Defence Technology, ICDT 2022
Y2 - 22 August 2022 through 26 August 2022
ER -