TY - GEN
T1 - Numerical investigation of an asymmetric double suction centrifugal compressor with different backswept angle matching for a wide operating range
AU - Zhang, Hanzhi
AU - Lao, Dazhong
AU - Wei, Longyu
AU - Yang, Ce
AU - Qi, Mingxu
N1 - Publisher Copyright:
Copyright © 2017 ASME.
PY - 2017
Y1 - 2017
N2 - The work presented here investigates the characteristics of the different impeller backswept angle matchings for a wide stable operating range in an asymmetric double suction centrifugal compressor. The numerical simulation was employed to investigate the influence of different backswept angle matchings on the stable operating range. The aim is to propose a proper change of the backswept angle matching between two impeller sides to improve the impeller power capability and mass flow distribution, furthermore, to delay the operating mode transition and widen the stable operating range of the compressor. Firstly, the method to determine the optimum backswept angle matching obtained by the theory calculation. Then, three matching models were proposed and analyzed in detail. In three matching models, the backswept angle differences between the front and rear impeller side are 0°, 10° and 20°, respectively. The analysis mainly focused on the influence of the different backswept angle matchings on the compressor flow field characteristics and the mass flow distribution characteristics. The results show that the change of the impeller backswept angle matching can improve the mass flow distribution characteristics for two impeller sides and further reduce the stall mass flow rate of the double suction compressor. The model that the backswept angle difference is 10° can delay the operating mode transition and reduce the stall mass flow of the double suction compressor. The model that the backswept angle difference is 20° can also reduce the stall mass flow and finally enable the front impeller into the stall condition. Therefore, the proper change of the backswept angle matching can achieve the purpose of reducing the stall mass flow and widening the operating range for the double suction centrifugal compressor.
AB - The work presented here investigates the characteristics of the different impeller backswept angle matchings for a wide stable operating range in an asymmetric double suction centrifugal compressor. The numerical simulation was employed to investigate the influence of different backswept angle matchings on the stable operating range. The aim is to propose a proper change of the backswept angle matching between two impeller sides to improve the impeller power capability and mass flow distribution, furthermore, to delay the operating mode transition and widen the stable operating range of the compressor. Firstly, the method to determine the optimum backswept angle matching obtained by the theory calculation. Then, three matching models were proposed and analyzed in detail. In three matching models, the backswept angle differences between the front and rear impeller side are 0°, 10° and 20°, respectively. The analysis mainly focused on the influence of the different backswept angle matchings on the compressor flow field characteristics and the mass flow distribution characteristics. The results show that the change of the impeller backswept angle matching can improve the mass flow distribution characteristics for two impeller sides and further reduce the stall mass flow rate of the double suction compressor. The model that the backswept angle difference is 10° can delay the operating mode transition and reduce the stall mass flow of the double suction compressor. The model that the backswept angle difference is 20° can also reduce the stall mass flow and finally enable the front impeller into the stall condition. Therefore, the proper change of the backswept angle matching can achieve the purpose of reducing the stall mass flow and widening the operating range for the double suction centrifugal compressor.
UR - http://www.scopus.com/inward/record.url?scp=85028974219&partnerID=8YFLogxK
U2 - 10.1115/GT2017-63372
DO - 10.1115/GT2017-63372
M3 - Conference contribution
AN - SCOPUS:85028974219
T3 - Proceedings of the ASME Turbo Expo
BT - Turbomachinery
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, GT 2017
Y2 - 26 June 2017 through 30 June 2017
ER -