TY - GEN
T1 - Numerical analysis of point contact EHL on coated substrates
AU - Wang, Zhan Jiang
AU - Hu, Yuan Zhong
AU - Wang, Wen Zhong
AU - Wang, Hui
PY - 2010
Y1 - 2010
N2 - Performances of point contact EHL on multilayered or coated substrates have been analyzed in this paper via computer simulations, with emphasis on comparing the effects of Newtonian and non-Newtonian lubricants. The lubrication system consists of a rigid ball in contact with a smooth coated flat. The coating is perfectly bonded to an elastic substrate and it has a uniform thickness. The rigid ball has surface velocity U relative to the contact point. The hydrodynamic pressure p is governed by a generalized Reynolds equation in which the non-Newtonian effects of lubricants are characterized by two factors whose values are determined based on lubricant rheology. The Papkovich-Neuber potentials were employed to get the response functions in frequency domain for layered contact problems, and the influence coefficients relating pressure to surface displacements and stresses can be obtained via invert Fourier transform. The surface deformation was then calculated in terms of the pressure-displacement influence coefficients and the DC-FFT method was used to speed up the computation. The distributions of pressure, film thickness and subsurface stress have been analyzed for lubricants with different rheological behaviors, from which pressure and film thickness profiles along the rolling direction are calculated for Newtonian and Non-Newtonian lubricants. The central film thickness become thicker for suffer coatings in the case of Newtonian lubricants, but the trend is reversed for Non-Newtonian lubricants. The surface stresses along the rolling direction show a spike corresponding to the pressure, which is more significant with stiffer coatings in the Newtonian case, but the spike is less visible for Non-Newtonian lubricants.
AB - Performances of point contact EHL on multilayered or coated substrates have been analyzed in this paper via computer simulations, with emphasis on comparing the effects of Newtonian and non-Newtonian lubricants. The lubrication system consists of a rigid ball in contact with a smooth coated flat. The coating is perfectly bonded to an elastic substrate and it has a uniform thickness. The rigid ball has surface velocity U relative to the contact point. The hydrodynamic pressure p is governed by a generalized Reynolds equation in which the non-Newtonian effects of lubricants are characterized by two factors whose values are determined based on lubricant rheology. The Papkovich-Neuber potentials were employed to get the response functions in frequency domain for layered contact problems, and the influence coefficients relating pressure to surface displacements and stresses can be obtained via invert Fourier transform. The surface deformation was then calculated in terms of the pressure-displacement influence coefficients and the DC-FFT method was used to speed up the computation. The distributions of pressure, film thickness and subsurface stress have been analyzed for lubricants with different rheological behaviors, from which pressure and film thickness profiles along the rolling direction are calculated for Newtonian and Non-Newtonian lubricants. The central film thickness become thicker for suffer coatings in the case of Newtonian lubricants, but the trend is reversed for Non-Newtonian lubricants. The surface stresses along the rolling direction show a spike corresponding to the pressure, which is more significant with stiffer coatings in the Newtonian case, but the spike is less visible for Non-Newtonian lubricants.
UR - http://www.scopus.com/inward/record.url?scp=77953699286&partnerID=8YFLogxK
U2 - 10.1115/IJTC2009-15038
DO - 10.1115/IJTC2009-15038
M3 - Conference contribution
AN - SCOPUS:77953699286
SN - 9780791848951
T3 - Proceedings of the ASME/STLE International Joint Tribology Conference 2009, IJTC2009
SP - 471
EP - 473
BT - Proceedings of the ASME/STLE International Joint Tribology Conference 2009, IJTC2009
T2 - 2009 ASME/STLE International Joint Tribology Conference, IJTC2009
Y2 - 19 October 2009 through 21 October 2009
ER -