Normal elements of noncommutative Iwasawa algebras over SL3(ℤp)

Dong Han, Feng Wei*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Let p be a prime integer and let ℤp be the ring of p-adic integers. By a purely computational approach we prove that each nonzero normal element of a noncommutative Iwasawa algebra over the special linear group SL3 (ℤp) is a unit. This gives a positive answer to an open question in [F. Wei and D. Bian, Erratum: Normal elements of completed group algebras over SLn (ℤp) [mr2747414], Internat. J. Algebra Comput. 23 (2013), no. 1, 215] and makes up for an earlier mistake in [F. Wei and D. Bian, Normal elements of completed group algebras over SLn (ℤp), Internat. J. Algebra Comput. 20 (2010), no. 8, 1021-1039] simultaneously.

源语言英语
页(从-至)111-147
页数37
期刊Forum Mathematicum
31
1
DOI
出版状态已出版 - 1 1月 2019

指纹

探究 'Normal elements of noncommutative Iwasawa algebras over SL3(ℤp)' 的科研主题。它们共同构成独一无二的指纹。

引用此