Nonlinear vibration of a composite plate to harmonic excitation with initial geometric imperfection in thermal environments

Liu Liu*, Jin Ming Li, George A. Kardomateas

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

28 引用 (Scopus)

摘要

The paper focuses on the nonlinear dynamic response of a thermally loaded thin composite plate subjected to harmonic excitation. A theoretical formulation is derived in terms of assumed modes and an Airy stress function, which incorporates an initial global geometric imperfection. Contributions of in-plane boundary constraints due to surrounding thermal sealing materials are taken into accounted by giving equivalent in-plane boundary stiffness. The effects of the temperature, equivalent in-plane boundary stiffness and initial geometric imperfection on the dynamic behavior are investigated through a detail parametric study. It is shown that the critical buckling temperature of a perfect plate decreases with increasing the equivalent in-plane boundary stiffness significantly. A secondary stable equilibrium branch exists for an imperfect plate. The presence of the global imperfection postpones the onset of the critical state. The nonlinear dynamic response of the plate is a hardening-spring type in the pre-critical region due to one equilibrium state, and is a softening-type in the post-critical region because of two stable equilibria. The strain frequency response is dominated by the superharmonic frequency components for the plate at ambient temperature, and the subharmonic frequency components in the thermal environments.

源语言英语
页(从-至)401-423
页数23
期刊Composite Structures
209
DOI
出版状态已出版 - 1 2月 2019

指纹

探究 'Nonlinear vibration of a composite plate to harmonic excitation with initial geometric imperfection in thermal environments' 的科研主题。它们共同构成独一无二的指纹。

引用此