Non-translational alignment for multi-relational networks

Shengnan Li, Xin Li*, Rui Ye, Mingzhong Wang, Haiping Su, Yingzi Ou

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

19 引用 (Scopus)

摘要

Most existing solutions for the alignment of multirelational networks, such as multi-lingual knowledge bases, are "translation"-based which facilitate the network embedding via the trans-family, such as TransE. However, they cannot address triangular or other structural properties effectively. Thus, we propose a non-translational approach, which aims to utilize a probabilistic model to offer more robust solutions to the alignment task, by exploring the structural properties as well as leveraging on anchors to project each network onto the same vector space during the process of learning the representation of individual networks. The extensive experiments on four multi-lingual knowledge graphs demonstrate the effectiveness and robustness of the proposed method over a set of stateof-the-art alignment methods.

源语言英语
主期刊名Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
编辑Jerome Lang
出版商International Joint Conferences on Artificial Intelligence
4180-4186
页数7
ISBN(电子版)9780999241127
DOI
出版状态已出版 - 2018
活动27th International Joint Conference on Artificial Intelligence, IJCAI 2018 - Stockholm, 瑞典
期限: 13 7月 201819 7月 2018

出版系列

姓名IJCAI International Joint Conference on Artificial Intelligence
2018-July
ISSN(印刷版)1045-0823

会议

会议27th International Joint Conference on Artificial Intelligence, IJCAI 2018
国家/地区瑞典
Stockholm
时期13/07/1819/07/18

指纹

探究 'Non-translational alignment for multi-relational networks' 的科研主题。它们共同构成独一无二的指纹。

引用此