Night colorize: Fully convolutional colorization network for low-light images

Lubin Xia, Li Li, Weiqi Jin, Su Qiu*, Hongchang Cheng

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

An end-to-end network is proposed for low-light images natural colorization using a deep fully convolutional architecture. The network consists of a downsampling sub-network and an upsampling sub-network. The downsampling component extracts the high-level features of the input images, while the upsampling component transforms the high-level features to color. A skip connection is used to transmit low layer information to the deep layer so as to improve the colorization accuracy. Gamma correction and random noise augmentation are used to improve the network adaptability to low-light images. The trained model can naturally colorize low-light images without any reference image or artificial scribbles.

源语言英语
主期刊名2019 International Conference on Image and Video Processing, and Artificial Intelligence
编辑Ruidan Su
出版商SPIE
ISBN(电子版)9781510634091
DOI
出版状态已出版 - 2019
活动2019 2nd International Conference on Image and Video Processing, and Artificial Intelligence, IVPAI 2019 - Shanghai, 中国
期限: 23 8月 201925 8月 2019

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
11321
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议2019 2nd International Conference on Image and Video Processing, and Artificial Intelligence, IVPAI 2019
国家/地区中国
Shanghai
时期23/08/1925/08/19

指纹

探究 'Night colorize: Fully convolutional colorization network for low-light images' 的科研主题。它们共同构成独一无二的指纹。

引用此

Xia, L., Li, L., Jin, W., Qiu, S., & Cheng, H. (2019). Night colorize: Fully convolutional colorization network for low-light images. 在 R. Su (编辑), 2019 International Conference on Image and Video Processing, and Artificial Intelligence 文章 113210T (Proceedings of SPIE - The International Society for Optical Engineering; 卷 11321). SPIE. https://doi.org/10.1117/12.2547902