TY - GEN
T1 - Neural variational correlated topic modeling
AU - Liu, Luyang
AU - Huang, Heyan
AU - Gao, Yang
AU - Wei, Xiaochi
AU - Zhang, Yongfeng
N1 - Publisher Copyright:
© 2019 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC-BY 4.0 License.
PY - 2019/5/13
Y1 - 2019/5/13
N2 - With the rapid development of the Internet, millions of documents, such as news and web pages, are generated everyday. Mining the topics and knowledge on them has attracted a lot of interest on both academic and industrial areas. As one of the prevalent unsupervised data mining tools, topic models are usually explored as probabilistic generative models for large collections of texts. Traditional probabilistic topic models tend to find a closed form solution of model parameters and approach the intractable posteriors via approximation methods, which usually lead to the inaccurate inference of parameters and low efficiency when it comes to a quite large volume of data. Recently, an emerging trend of neural variational inference can overcome the above issues, which offers a scalable and powerful deep generative framework for modeling latent topics via neural networks. Interestingly, a common assumption for the most neural variational topic models is that topics are independent and irrelevant to each other. However, this assumption is unreasonable in many practical scenarios. In this paper, we propose a novel Centralized Transformation Flow to capture the correlations among topics by reshaping topic distributions. Furthermore, we present the Transformation Flow Lower Bound to improve the performance of the proposed model. Extensive experiments on two standard benchmark datasets have well-validated the effectiveness of the proposed approach.
AB - With the rapid development of the Internet, millions of documents, such as news and web pages, are generated everyday. Mining the topics and knowledge on them has attracted a lot of interest on both academic and industrial areas. As one of the prevalent unsupervised data mining tools, topic models are usually explored as probabilistic generative models for large collections of texts. Traditional probabilistic topic models tend to find a closed form solution of model parameters and approach the intractable posteriors via approximation methods, which usually lead to the inaccurate inference of parameters and low efficiency when it comes to a quite large volume of data. Recently, an emerging trend of neural variational inference can overcome the above issues, which offers a scalable and powerful deep generative framework for modeling latent topics via neural networks. Interestingly, a common assumption for the most neural variational topic models is that topics are independent and irrelevant to each other. However, this assumption is unreasonable in many practical scenarios. In this paper, we propose a novel Centralized Transformation Flow to capture the correlations among topics by reshaping topic distributions. Furthermore, we present the Transformation Flow Lower Bound to improve the performance of the proposed model. Extensive experiments on two standard benchmark datasets have well-validated the effectiveness of the proposed approach.
KW - Natural language processing
KW - Neural variational inference
KW - Topic model
UR - http://www.scopus.com/inward/record.url?scp=85066890881&partnerID=8YFLogxK
U2 - 10.1145/3308558.3313561
DO - 10.1145/3308558.3313561
M3 - Conference contribution
AN - SCOPUS:85066890881
T3 - The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019
SP - 1142
EP - 1152
BT - The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019
PB - Association for Computing Machinery, Inc
T2 - 2019 World Wide Web Conference, WWW 2019
Y2 - 13 May 2019 through 17 May 2019
ER -