TY - GEN
T1 - Mutual-Guided Dynamic Network for Image Fusion
AU - Guan, Yuanshen
AU - Xu, Ruikang
AU - Yao, Mingde
AU - Wang, Lizhi
AU - Xiong, Zhiwei
N1 - Publisher Copyright:
© 2023 ACM.
PY - 2023/10/26
Y1 - 2023/10/26
N2 - Image fusion aims to generate a high-quality image from multiple images captured under varying conditions. The key problem of this task is to preserve complementary information while filtering out irrelevant information for the fused result. However, existing methods address this problem by leveraging static convolutional neural networks (CNNs), suffering two inherent limitations during feature extraction,i.e., being unable to handle spatial-variant contents and lacking guidance from multiple inputs. In this paper, we propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs. Specifically, we design a mutual-guided dynamic filter (MGDF) for adaptive feature extraction, composed of a mutual-guided cross-attention (MGCA) module and a dynamic filter predictor, where the former incorporates additional guidance from different inputs and the latter generates spatial-variant kernels for different locations. In addition, we introduce a parallel feature fusion (PFF) module to effectively fuse local and global information of the extracted features. To further reduce the redundancy among the extracted features while simultaneously preserving their shared structural information, we devise a novel loss function that combines the minimization of normalized mutual information (NMI) with an estimated gradient mask. Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks. The code and model are publicly available at: https://github.com/Guanys-dar/MGDN.
AB - Image fusion aims to generate a high-quality image from multiple images captured under varying conditions. The key problem of this task is to preserve complementary information while filtering out irrelevant information for the fused result. However, existing methods address this problem by leveraging static convolutional neural networks (CNNs), suffering two inherent limitations during feature extraction,i.e., being unable to handle spatial-variant contents and lacking guidance from multiple inputs. In this paper, we propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs. Specifically, we design a mutual-guided dynamic filter (MGDF) for adaptive feature extraction, composed of a mutual-guided cross-attention (MGCA) module and a dynamic filter predictor, where the former incorporates additional guidance from different inputs and the latter generates spatial-variant kernels for different locations. In addition, we introduce a parallel feature fusion (PFF) module to effectively fuse local and global information of the extracted features. To further reduce the redundancy among the extracted features while simultaneously preserving their shared structural information, we devise a novel loss function that combines the minimization of normalized mutual information (NMI) with an estimated gradient mask. Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks. The code and model are publicly available at: https://github.com/Guanys-dar/MGDN.
KW - dynamic filter
KW - image fusion
KW - mutual information
UR - http://www.scopus.com/inward/record.url?scp=85179558162&partnerID=8YFLogxK
U2 - 10.1145/3581783.3612261
DO - 10.1145/3581783.3612261
M3 - Conference contribution
AN - SCOPUS:85179558162
T3 - MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
SP - 1779
EP - 1788
BT - MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
PB - Association for Computing Machinery, Inc
T2 - 31st ACM International Conference on Multimedia, MM 2023
Y2 - 29 October 2023 through 3 November 2023
ER -