Multiview Canonical Correlation Analysis over Graphs

Jia Chen, Gang Wang, Georgios B. Giannakis

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 6
  • Captures
    • Readers: 20
see details

摘要

Multiview canonical correlation analysis (MCCA) looks for shared low-dimensional representations hidden in multiple transformations of common source signals. Existing MCCA approaches do not exploit the geometry of common sources, which can be either given a priori, or constructed from do- main knowledge. In this paper, a novel graph-regularized (G) MCCA is developed to account for such geometry-bearing in- formation via graph regularization in the classical maximum- variance MCCA model. GMCCA minimizes the distance between the sought canonical variables and the common sources, while incorporating the graph-induced prior of these sources. To capture nonlinear dependencies, GMCCA is fur- ther broadened to the graph-regularized kernel (GK) MCCA. Numerical tests using real datasets document the merits of G(K)MCCA in comparison with competing alternatives.

源语言英语
主期刊名2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
2947-2951
页数5
ISBN(电子版)9781479981311
DOI
出版状态已出版 - 5月 2019
已对外发布
活动44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, 英国
期限: 12 5月 201917 5月 2019

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2019-May
ISSN(印刷版)1520-6149

会议

会议44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
国家/地区英国
Brighton
时期12/05/1917/05/19

指纹

探究 'Multiview Canonical Correlation Analysis over Graphs' 的科研主题。它们共同构成独一无二的指纹。

引用此

Chen, J., Wang, G., & Giannakis, G. B. (2019). Multiview Canonical Correlation Analysis over Graphs. 在 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings (页码 2947-2951). 文章 8683096 (ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings; 卷 2019-May). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICASSP.2019.8683096