Multisource Remote Sensing Data Classification Using Fractional Fourier Transformer

Xudong Zhao, Mengmeng Zhang, Ran Tao*, Wei Li, Wenzhi Liao, Wilfried Phlips

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Focusing on joint classification of Hyperspectral image (HSI) and Light detection and ranging (LiDAR) data, a fractional Fourier image transformer (FrIT) is proposed as a backbone network in this paper. In the proposed FrIT, HSI and LiDAR data are firstly fused at pixel-level. Both multi-source and HSI feature extractors are utilized to capture local contexts. Then, a plug-and-play image transformer FrIT is explored for global contexts and sequential feature extraction. Unlike the attention-based representations in classic visual image transformer (VIT), FrIT is capable of speeding up the transformer architectures massively. To reduce the information loss from shallow to deep layers, FrIT is devised to connect contextual features in multiple fractional domains. At last, to evaluate the performance of FrIT, a new HSI and LiDAR benchmark is provided for extensive experiments, on which the proposed FrIT gains an improvement of 3% over state-of-the-art methods.

源语言英语
主期刊名IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
出版商Institute of Electrical and Electronics Engineers Inc.
823-826
页数4
ISBN(电子版)9781665427920
DOI
出版状态已出版 - 2022
活动2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 - Kuala Lumpur, 马来西亚
期限: 17 7月 202222 7月 2022

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2022-July

会议

会议2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022
国家/地区马来西亚
Kuala Lumpur
时期17/07/2222/07/22

指纹

探究 'Multisource Remote Sensing Data Classification Using Fractional Fourier Transformer' 的科研主题。它们共同构成独一无二的指纹。

引用此