Multiscale infrared and visible image fusion using gradient domain guided image filtering

Jin Zhu, Weiqi Jin*, Li Li, Zhenghao Han, Xia Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

41 引用 (Scopus)

摘要

For better surveillance with infrared and visible imaging, a novel hybrid multiscale decomposition fusion method using gradient domain guided image filtering (HMSD-GDGF) is proposed in this study. In this method, hybrid multiscale decomposition with guided image filtering and gradient domain guided image filtering of source images are first applied before the weight maps of each scale are obtained using a saliency detection technology and filtering means with three different fusion rules at different scales. The three types of fusion rules are for small-scale detail level, large-scale detail level, and base level. Finally, the target becomes more salient and can be more easily detected in the fusion result, with the detail information of the scene being fully displayed. After analyzing the experimental comparisons with state-of-the-art fusion methods, the HMSD-GDGF method has obvious advantages in fidelity of salient information (including structural similarity, brightness, and contrast), preservation of edge features, and human visual perception. Therefore, visual effects can be improved by using the proposed HMSD-GDGF method.

源语言英语
页(从-至)8-19
页数12
期刊Infrared Physics and Technology
89
DOI
出版状态已出版 - 3月 2018

指纹

探究 'Multiscale infrared and visible image fusion using gradient domain guided image filtering' 的科研主题。它们共同构成独一无二的指纹。

引用此