Multiple–Model UKF/CKF State Estimation for Nonlinear Systems

Xiaodi Shi, Liping Yan*, Yuanqing Xia, Bo Xiao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In most control systems, modeling error and noise interference will always lead to the performance degradation and divergence of the UKF or the CKF. To settle a matter caused by model uncertainties, a new UKF/CKF frame combined with multiple model method is presented in this paper. Through probabilistic multiple model design method, this paper approximates the posterior densities by a finite number of probabilistically weighted points and uses these points to display the entire state space. Simulation results and comparison analysis demonstrate that the multiple-model UKF(MMUKF) and the multiple-model CKF(MMCKF) have higher precision and stronger robustness than the traditional UKF and CKF in case of model uncertainties.

源语言英语
主期刊名Advances in Guidance, Navigation and Control - Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020
编辑Liang Yan, Haibin Duan, Xiang Yu
出版商Springer Science and Business Media Deutschland GmbH
79-90
页数12
ISBN(印刷版)9789811581540
DOI
出版状态已出版 - 2022
活动International Conference on Guidance, Navigation and Control, ICGNC 2020 - Tianjin, 中国
期限: 23 10月 202025 10月 2020

出版系列

姓名Lecture Notes in Electrical Engineering
644 LNEE
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议International Conference on Guidance, Navigation and Control, ICGNC 2020
国家/地区中国
Tianjin
时期23/10/2025/10/20

指纹

探究 'Multiple–Model UKF/CKF State Estimation for Nonlinear Systems' 的科研主题。它们共同构成独一无二的指纹。

引用此