Multiple RNN method to prediction human action with sensor data

Xiangru Chen, Yue Yu*, Fengxia Li

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Human body motion includes the complex spatiotemporal information and human body motion prediction is useful in the human-computer interaction. An Encoder-Multiple-Recurrent-Decoder (EMRD) model to learn human action from sensor data and predict the later ones is proposed in this paper. The kernel of this method is recurrent neural networks (RNN). The model is used to predict the next several frames of a set of sensor data, which is continuous data but is pre-processed by embedding method proposed in this paper. EMRD extends the previous Encoder-Recurrent-Decoder (ERD) models and Long Short Terms Memory (LSTM) model which are used in the video human body movement prediction.

源语言英语
主期刊名Proceedings - 2017 International Conference on Virtual Reality and Visualization, ICVRV 2017
出版商Institute of Electrical and Electronics Engineers Inc.
419-420
页数2
ISBN(电子版)9781538626368
DOI
出版状态已出版 - 2 7月 2017
活动7th International Conference on Virtual Reality and Visualization, ICVRV 2017 - Zhengzhou, 中国
期限: 21 10月 201722 10月 2017

出版系列

姓名Proceedings - 2017 International Conference on Virtual Reality and Visualization, ICVRV 2017

会议

会议7th International Conference on Virtual Reality and Visualization, ICVRV 2017
国家/地区中国
Zhengzhou
时期21/10/1722/10/17

指纹

探究 'Multiple RNN method to prediction human action with sensor data' 的科研主题。它们共同构成独一无二的指纹。

引用此