摘要
Let A be a quasi-finite R-algebra (i.e., a direct limit of module finite algebras) with identity. Let I i, i = 0,...,m, be two-sided ideals of A, GLn(A, I i) be the principal congruence subgroup of level I i in GLn(A) and E n(A, I i) be the relative elementary subgroup of level I i. We prove the multiple commutator formula [En(A, I0), GLn(A, I1), GLn(A, I2), ... , GLn(A, Im)] = [En(A, I0), En(A, I1), En(A, I2), ... , En(A, Im)], which is a broad generalization of the standard commutator formulas. This result contains all the published results on commutator formulas over commutative rings and answers a problem posed by A. Stepanov and N. Vavilov.
源语言 | 英语 |
---|---|
页(从-至) | 481-505 |
页数 | 25 |
期刊 | Israel Journal of Mathematics |
卷 | 195 |
期 | 1 |
DOI | |
出版状态 | 已出版 - 6月 2013 |
指纹
探究 'Multiple commutator formulas' 的科研主题。它们共同构成独一无二的指纹。引用此
Hazrat, R., & Zhang, Z. (2013). Multiple commutator formulas. Israel Journal of Mathematics, 195(1), 481-505. https://doi.org/10.1007/s11856-012-0135-8