Multiphysics fields simulation of photothermal catalytic degradation of R134a in a flat plate reactor

Jianchen Liu, Qianghui Xu*, Xiaoye Dai, Tianhao Wang, Junyu Yang, Lin Shi

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Photothermal catalytic degradation is an environment-friendly way to dispose high-global-warming-potential hydrofluorocarbon refrigerants (HFCs). There are challenges in understanding the heat and mass transfer mechanism of this multi-physicochemical process. This study focuses on photothermal catalytic degradation of R134a, one of the hydrofluorocarbon refrigerant, in a flat plate reactor. A numerical model was developed to couple laminar flow, conjugate heat transfer, dilute species transport, surface radiation and chemical reaction. Meanwhile, experiments were conducted to measure the R134a degradation across various temperatures. The parameters of thermal boundary conditions and the kinetics were calibrated by combining the experimental data and the numerical model. The preexponential factor of 0.1146 m/s and activation energy of 21129.1 J/mol were yielded, achieving less than 10 % relative error of the R134a concentration. The average degradation rate was intensified by around one magnitude from 100 °C to 400 °C. Across various temperatures, molecular diffusion always dominated the mass transport process. However, the governing mechanism limiting the photothermal catalytic process was the degradation kinetics, as evidenced by the uniform concentration distribution and the Damköehler number significantly below 1. Several methods were also proposed to enhance the photothermal catalytic degradation rate.

源语言英语
文章编号124788
期刊Applied Thermal Engineering
258
DOI
出版状态已出版 - 15 1月 2025

指纹

探究 'Multiphysics fields simulation of photothermal catalytic degradation of R134a in a flat plate reactor' 的科研主题。它们共同构成独一无二的指纹。

引用此