TY - JOUR
T1 - Multigraph-Based Low-Rank Tensor Approximation for Hyperspectral Image Restoration
AU - Liu, Na
AU - Li, Wei
AU - Tao, Ran
AU - Du, Qian
AU - Chanussot, Jocelyn
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Low-rank-tensor-approximation(LRTA)-based hyperspectral image and hyperspectral imagery (HSI) restoration has drawn increasing attention. However, most of the methods construct a hidden low-rank tensor by utilizing the nonlocal self-similarity (NLSS) and global spectral correlation (GSC) inherited by HSIs. Although achieving state-of-the-art (SOTA) restoration performance, NLSS and GSC have limitations. NLSS is introduced from natural image denoising to remove spatially independent identically distributed (i.i.d.) Gaussian and impulse noise, while GSC, which is naturally possessed by HSIs, is adopted to maintain the spectral integrity and remove spectrally, i.i.d., degradations. Therefore, NLSS and GSC may not be successfully used for complex HSI restoration tasks, such as destriping, cloud removal, and recovery of atmospheric absorption bands. To solve the issue, borrowing the idea from manifold learning, the geometry information characterized by proximity relationship, is integrated with the LRTA to solve the above issue, named multigraph-based LRTA (MGLRTA). Different from most of the existing methods, the proposed MGLRTA directly models an HSI as a low-rank tensor and efficiently explores the extra proximity information on the defined graphs that are not only inherited by the low-rank constraints but also naturally possessed in HSIs. A well-posed iterative algorithm is designed to solve the restoration problem. Experimental results on different datasets that cover several severe degradation scenarios demonstrate that the proposed MGLRTA outperforms the SOTA HSI restoration methods.
AB - Low-rank-tensor-approximation(LRTA)-based hyperspectral image and hyperspectral imagery (HSI) restoration has drawn increasing attention. However, most of the methods construct a hidden low-rank tensor by utilizing the nonlocal self-similarity (NLSS) and global spectral correlation (GSC) inherited by HSIs. Although achieving state-of-the-art (SOTA) restoration performance, NLSS and GSC have limitations. NLSS is introduced from natural image denoising to remove spatially independent identically distributed (i.i.d.) Gaussian and impulse noise, while GSC, which is naturally possessed by HSIs, is adopted to maintain the spectral integrity and remove spectrally, i.i.d., degradations. Therefore, NLSS and GSC may not be successfully used for complex HSI restoration tasks, such as destriping, cloud removal, and recovery of atmospheric absorption bands. To solve the issue, borrowing the idea from manifold learning, the geometry information characterized by proximity relationship, is integrated with the LRTA to solve the above issue, named multigraph-based LRTA (MGLRTA). Different from most of the existing methods, the proposed MGLRTA directly models an HSI as a low-rank tensor and efficiently explores the extra proximity information on the defined graphs that are not only inherited by the low-rank constraints but also naturally possessed in HSIs. A well-posed iterative algorithm is designed to solve the restoration problem. Experimental results on different datasets that cover several severe degradation scenarios demonstrate that the proposed MGLRTA outperforms the SOTA HSI restoration methods.
KW - Graph signal processing
KW - hyperspectral imagery
KW - image restoration
KW - low-rank tensor
UR - http://www.scopus.com/inward/record.url?scp=85130859223&partnerID=8YFLogxK
U2 - 10.1109/TGRS.2022.3177719
DO - 10.1109/TGRS.2022.3177719
M3 - Article
AN - SCOPUS:85130859223
SN - 0196-2892
VL - 60
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
M1 - 5530314
ER -