TY - GEN
T1 - Multi-view Hypergraph Contrastive Policy Learning for Conversational Recommendation
AU - Zhao, Sen
AU - Wei, Wei
AU - Mao, Xian Ling
AU - Zhu, Shuai
AU - Yang, Minghui
AU - Wen, Zujie
AU - Chen, Dangyang
AU - Zhu, Feida
N1 - Publisher Copyright:
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
PY - 2023/7/19
Y1 - 2023/7/19
N2 - Conversational recommendation systems (CRS) aim to interactively acquire user preferences and accordingly recommend items to users. Accurately learning the dynamic user preferences is of crucial importance for CRS. Previous works learn the user preferences with pairwise relations from the interactive conversation and item knowledge, while largely ignoring the fact that factors for a relationship in CRS are multiplex. Specifically, the user likes/dislikes the items that satisfy some attributes (Like/Dislike view). Moreover social influence is another important factor that affects user preference towards the item (Social view), while is largely ignored by previous works in CRS. The user preferences from these three views are inherently different but also correlated as a whole. The user preferences from the same views should be more similar than that from different views. The user preferences from Like View should be similar to Social View while different from Dislike View. To this end, we propose a novel model, namely Multi-view Hypergraph Contrastive Policy Learning (MHCPL). Specifically, MHCPL timely chooses useful social information according to the interactive history and builds a dynamic hypergraph with three types of multiplex relations from different views. The multiplex relations in each view are successively connected according to their generation order in the interactive conversation. A hierarchical hypergraph neural network is proposed to learn user preferences by integrating information of the graphical and sequential structure from the dynamic hypergraph. A cross-view contrastive learning module is proposed to maintain the inherent characteristics and the correlations of user preferences from different views. Extensive experiments conducted on benchmark datasets demonstrate that MHCPL outperforms the state-of-the-art methods.
AB - Conversational recommendation systems (CRS) aim to interactively acquire user preferences and accordingly recommend items to users. Accurately learning the dynamic user preferences is of crucial importance for CRS. Previous works learn the user preferences with pairwise relations from the interactive conversation and item knowledge, while largely ignoring the fact that factors for a relationship in CRS are multiplex. Specifically, the user likes/dislikes the items that satisfy some attributes (Like/Dislike view). Moreover social influence is another important factor that affects user preference towards the item (Social view), while is largely ignored by previous works in CRS. The user preferences from these three views are inherently different but also correlated as a whole. The user preferences from the same views should be more similar than that from different views. The user preferences from Like View should be similar to Social View while different from Dislike View. To this end, we propose a novel model, namely Multi-view Hypergraph Contrastive Policy Learning (MHCPL). Specifically, MHCPL timely chooses useful social information according to the interactive history and builds a dynamic hypergraph with three types of multiplex relations from different views. The multiplex relations in each view are successively connected according to their generation order in the interactive conversation. A hierarchical hypergraph neural network is proposed to learn user preferences by integrating information of the graphical and sequential structure from the dynamic hypergraph. A cross-view contrastive learning module is proposed to maintain the inherent characteristics and the correlations of user preferences from different views. Extensive experiments conducted on benchmark datasets demonstrate that MHCPL outperforms the state-of-the-art methods.
KW - Conversational Recommendation
KW - Graph Representation Learning
KW - Reinforcement Learning
UR - http://www.scopus.com/inward/record.url?scp=85167907380&partnerID=8YFLogxK
U2 - 10.1145/3539618.3591737
DO - 10.1145/3539618.3591737
M3 - Conference contribution
AN - SCOPUS:85167907380
T3 - SIGIR 2023 - Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval
SP - 654
EP - 664
BT - SIGIR 2023 - Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval
PB - Association for Computing Machinery, Inc
T2 - 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2023
Y2 - 23 July 2023 through 27 July 2023
ER -