Multi-label Text Classification and Text Adversarial Attack

Yingxin Song, Zhenyan Liu, Chunxia Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Multi-label classification is an extension of multi-class classification. For multi-label problem, each instance may not be restricted to have only one label. In this paper, the methods to solve multi-label classification are divided into four aspects which are binary relevance method, label combination method, classifier chain and ensemble classifier chain. In order to enhance the performance of the text classifier, text adversarial attack should be used to enrich the training dataset. Thus, the related works with text adversarial attack are also introduced. In the end, we also explore some potential future issues in multi-label text classification and text adversarial attack.

源语言英语
主期刊名Proceedings - 2021 International Conference on Intelligent Computing, Automation and Applications, ICAA 2021
编辑Hongzhi Wang, Hong Lin, Zhiliang Qin
出版商Institute of Electrical and Electronics Engineers Inc.
532-536
页数5
ISBN(电子版)9781665437301
DOI
出版状态已出版 - 2021
活动2021 International Conference on Intelligent Computing, Automation and Applications, ICAA 2021 - Virtual, Nanjing, 中国
期限: 25 6月 202127 6月 2021

出版系列

姓名Proceedings - 2021 International Conference on Intelligent Computing, Automation and Applications, ICAA 2021

会议

会议2021 International Conference on Intelligent Computing, Automation and Applications, ICAA 2021
国家/地区中国
Virtual, Nanjing
时期25/06/2127/06/21

指纹

探究 'Multi-label Text Classification and Text Adversarial Attack' 的科研主题。它们共同构成独一无二的指纹。

引用此