Multi-Direction Decoding of Both-Hand Movement Using EEG Signals

Run Gao*, Ying Liu, Jiarong Wang, Luzheng Bi

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In this paper, we propose a method to decode the both-hand movement multi-direction based on electroencephalogram (EEG) signals. We use two kinds of decoding features, which are the potential amplitudes and power sums of EEG signals. One-versus-rest and decision tree are adopted as classification strategies, and linear discriminant analysis (LDA) classifier is used for classification. We apply an experimental paradigm to demonstrate the proposed method. The best four-class classification performance using the power sums of EEG signals with the one-versus-rest classification strategy is close to 70%. The experimental results show the feasibility of decoding both-hand movement multi-directions based on EEG signals. This work can promote the development of brain-computer interfaces for the assistance of hand-impaired patients.

源语言英语
主期刊名2022 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2022
出版商Institute of Electrical and Electronics Engineers Inc.
644-647
页数4
ISBN(电子版)9781665469838
DOI
出版状态已出版 - 2022
活动2022 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2022 - Guiyang, 中国
期限: 17 7月 202222 7月 2022

出版系列

姓名2022 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2022

会议

会议2022 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2022
国家/地区中国
Guiyang
时期17/07/2222/07/22

指纹

探究 'Multi-Direction Decoding of Both-Hand Movement Using EEG Signals' 的科研主题。它们共同构成独一无二的指纹。

引用此