摘要
In this chapter, we introduce a dynamic controller workload balancing scheme named MARVEL using emerging MARL for switch migration. We design a DRL framework for each agent in the MARL model. The DRL-based solution takes the workload pattern in the control plane as input and generates the migration decision as the output. When training is done, the DRL agent can quickly and accurately decide how to migrate switches among the controllers.
源语言 | 英语 |
---|---|
主期刊名 | SpringerBriefs in Computer Science |
出版商 | Springer |
页 | 23-38 |
页数 | 16 |
DOI | |
出版状态 | 已出版 - 2022 |
出版系列
姓名 | SpringerBriefs in Computer Science |
---|---|
ISSN(印刷版) | 2191-5768 |
ISSN(电子版) | 2191-5776 |
指纹
探究 'Multi-Agent Reinforcement Learning-Based Controller Load Balancing in SD-WANs' 的科研主题。它们共同构成独一无二的指纹。引用此
Guo, Z. (2022). Multi-Agent Reinforcement Learning-Based Controller Load Balancing in SD-WANs. 在 SpringerBriefs in Computer Science (页码 23-38). (SpringerBriefs in Computer Science). Springer. https://doi.org/10.1007/978-981-19-4874-9_3