mT6: Multilingual Pretrained Text-to-Text Transformer with Translation Pairs

Zewen Chi*, Li Dong, Shuming Ma, Shaohan Huang, Xian Ling Mao, Heyan Huang, Furu Wei

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

36 引用 (Scopus)

摘要

Multilingual T5 (MT5; Xue et al. 2020) pretrains a sequence-to-sequence model on massive monolingual texts, which has shown promising results on many cross-lingual tasks. In this paper, we improve multilingual text-to-text transfer Transformer with translation pairs (MT6). Specifically, we explore three cross-lingual text-to-text pre-training tasks, namely, machine translation, translation pair span corruption, and translation span corruption. In addition, we propose a partially non-autoregressive objective for text-to-text pretraining. We evaluate the methods on eight multilingual benchmark datasets, including sentence classification, named entity recognition, question answering, and abstractive summarization. Experimental results show that the proposed MT6 improves cross-lingual transferability over MT5.

源语言英语
主期刊名EMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings
出版商Association for Computational Linguistics (ACL)
1671-1683
页数13
ISBN(电子版)9781955917094
出版状态已出版 - 2021
活动2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021 - Virtual, Punta Cana, 多米尼加共和国
期限: 7 11月 202111 11月 2021

出版系列

姓名EMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings

会议

会议2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021
国家/地区多米尼加共和国
Virtual, Punta Cana
时期7/11/2111/11/21

指纹

探究 'mT6: Multilingual Pretrained Text-to-Text Transformer with Translation Pairs' 的科研主题。它们共同构成独一无二的指纹。

引用此