TY - JOUR
T1 - MRCPs-and-ERS/D-Oscillations-Driven Deep Learning Models for Decoding Unimanual and Bimanual Movements
AU - Wang, Jiarong
AU - Bi, Luzheng
AU - Feleke, Aberham Genetu
AU - Fei, Weijie
N1 - Publisher Copyright:
© 2001-2011 IEEE.
PY - 2023
Y1 - 2023
N2 - Motor brain-computer interface (BCI) can intend to restore or compensate for central nervous system functionality. In the motor-BCI, motor execution (ME), which relies on patients' residual or intact movement functions, is a more intuitive and natural paradigm. Based on the ME paradigm, we can decode voluntary hand movement intentions from electroencephalography (EEG) signals. Numerous studies have investigated EEG-based unimanual movement decoding. Moreover, some studies have explored bimanual movement decoding since bimanual coordination is important in daily-life assistance and bilateral neurorehabilitation therapy. However, the multi-class classification of the unimanual and bimanual movements shows weak performance. To address this problem, in this work, we propose a neurophysiological signatures-driven deep learning model utilizing the movement-related cortical potentials (MRCPs) and event-related synchronization/ desynchronization (ERS/D) oscillations for the first time, inspired by the finding that brain signals encode motor-related information with both evoked potentials and oscillation components in ME. The proposed model consists of a feature representation module, an attention-based channel-weighting module, and a shallow convolutional neural network module. Results show that our proposed model has superior performance to the baseline methods. Six-class classification accuracies of unimanual and bimanual movements achieved 80.3%. Besides, each feature module of our model contributes to the performance. This work is the first to fuse the MRCPs and ERS/D oscillations of ME in deep learning to enhance the multi-class unimanual and bimanual movements' decoding performance. This work can facilitate the neural decoding of unimanual and bimanual movements for neurorehabilitation and assistance.
AB - Motor brain-computer interface (BCI) can intend to restore or compensate for central nervous system functionality. In the motor-BCI, motor execution (ME), which relies on patients' residual or intact movement functions, is a more intuitive and natural paradigm. Based on the ME paradigm, we can decode voluntary hand movement intentions from electroencephalography (EEG) signals. Numerous studies have investigated EEG-based unimanual movement decoding. Moreover, some studies have explored bimanual movement decoding since bimanual coordination is important in daily-life assistance and bilateral neurorehabilitation therapy. However, the multi-class classification of the unimanual and bimanual movements shows weak performance. To address this problem, in this work, we propose a neurophysiological signatures-driven deep learning model utilizing the movement-related cortical potentials (MRCPs) and event-related synchronization/ desynchronization (ERS/D) oscillations for the first time, inspired by the finding that brain signals encode motor-related information with both evoked potentials and oscillation components in ME. The proposed model consists of a feature representation module, an attention-based channel-weighting module, and a shallow convolutional neural network module. Results show that our proposed model has superior performance to the baseline methods. Six-class classification accuracies of unimanual and bimanual movements achieved 80.3%. Besides, each feature module of our model contributes to the performance. This work is the first to fuse the MRCPs and ERS/D oscillations of ME in deep learning to enhance the multi-class unimanual and bimanual movements' decoding performance. This work can facilitate the neural decoding of unimanual and bimanual movements for neurorehabilitation and assistance.
KW - Brain-computer interface
KW - EEG
KW - motor execution
KW - movement decoding
UR - http://www.scopus.com/inward/record.url?scp=85149182240&partnerID=8YFLogxK
U2 - 10.1109/TNSRE.2023.3245617
DO - 10.1109/TNSRE.2023.3245617
M3 - Article
AN - SCOPUS:85149182240
SN - 1534-4320
VL - 31
SP - 1384
EP - 1393
JO - IEEE Transactions on Neural Systems and Rehabilitation Engineering
JF - IEEE Transactions on Neural Systems and Rehabilitation Engineering
ER -