Mpanet: Multi-Patch Attention for Infrared Small Target Object Detection

Ao Wang, Wei Li*, Xin Wu, Zhanchao Huang, Ran Tao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

11 引用 (Scopus)

摘要

Infrared small target detection (ISTD) has attracted widespread attention and been applied in various fields. Due to the small size of infrared targets and the noise interference from complex backgrounds, the performance of ISTD using convolutional neural networks (CNNs) is restricted. Moreover, the constriant that long-distance dependent features can not be encoded by the vanilla CNNs also impairs the robustness of capturing targets' shapes and locations in complex scenarios. To this end, a multi-patch attention network (MPANet) based on the axial-attention encoder and the multi-scale patch branch (MSPB) structure is proposed. Specially, an axial-attention-improved encoder architecture is designed to highlight the effective features of small targets and suppress background noises. Furthermore, the developed MSPB structure fuses the coarse-grained and fine-grained features from different semantic scales. Extensive experiments on the SIRST dataset show the superiority performance and effectiveness of the proposed MPANet compared to the state-of-the-art methods.

源语言英语
主期刊名IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
出版商Institute of Electrical and Electronics Engineers Inc.
3095-3098
页数4
ISBN(电子版)9781665427920
DOI
出版状态已出版 - 2022
活动2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 - Kuala Lumpur, 马来西亚
期限: 17 7月 202222 7月 2022

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2022-July

会议

会议2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022
国家/地区马来西亚
Kuala Lumpur
时期17/07/2222/07/22

指纹

探究 'Mpanet: Multi-Patch Attention for Infrared Small Target Object Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此