Motion velocity estimation from electroencephalography signals with extreme learning machine

Lei Su, Luzheng Bi*, Weijie Fei, Jinling Lian

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 8
see details

摘要

Decoding motion velocity from electroencephalography (EEG) signals is important for brain-computer interface (BCI) research. However, no studies explore how to decode the velocity of complex motion. In this paper, we apply extreme learning machine (ELM) to explore how to decode the velocity of complex motion from EEG signals. We design a new experimental paradigm and analyze the effects of the number of hidden neuron nodes and frequency band on the decoding performance. This work lays a foundation of building accurate motion decoders from EEG signals to develop the BCI-based prostheses and rehabilitation systems.

源语言英语
主期刊名Proceedings - 2017 Chinese Automation Congress, CAC 2017
出版商Institute of Electrical and Electronics Engineers Inc.
4901-4905
页数5
ISBN(电子版)9781538635247
DOI
出版状态已出版 - 29 12月 2017
活动2017 Chinese Automation Congress, CAC 2017 - Jinan, 中国
期限: 20 10月 201722 10月 2017

出版系列

姓名Proceedings - 2017 Chinese Automation Congress, CAC 2017
2017-January

会议

会议2017 Chinese Automation Congress, CAC 2017
国家/地区中国
Jinan
时期20/10/1722/10/17

指纹

探究 'Motion velocity estimation from electroencephalography signals with extreme learning machine' 的科研主题。它们共同构成独一无二的指纹。

引用此

Su, L., Bi, L., Fei, W., & Lian, J. (2017). Motion velocity estimation from electroencephalography signals with extreme learning machine. 在 Proceedings - 2017 Chinese Automation Congress, CAC 2017 (页码 4901-4905). (Proceedings - 2017 Chinese Automation Congress, CAC 2017; 卷 2017-January). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CAC.2017.8243647