TY - JOUR
T1 - Morit7a equivalences of cyclotomic Hecke algebras of type G(r, p, n)
AU - Hu, Jun
AU - Mathas, Andrew
PY - 2009/3
Y1 - 2009/3
N2 - We prove a Morita reduction theorem for the cyclotomic Hecke algebras ℋr, p, n(q, Q) of type G(r, p, n) with p > 1 and n ≧ 3. As a consequence, we show that computing the decomposition numbers of ℋr, p, n(Q) reduces to computing the p′-splittable decomposition numbers (see Definition 1.1) of the cyclotomic Hecke algebras ℋr′, p′, n′(Q′), where 1 ≦ r′ ≦ r, 1 ≦ n′ ≦ n, p′ | p and where the parameters Q′ are contained in a single (ε′, q)-orbit and ε′ is a primitive p′th root of unity.
AB - We prove a Morita reduction theorem for the cyclotomic Hecke algebras ℋr, p, n(q, Q) of type G(r, p, n) with p > 1 and n ≧ 3. As a consequence, we show that computing the decomposition numbers of ℋr, p, n(Q) reduces to computing the p′-splittable decomposition numbers (see Definition 1.1) of the cyclotomic Hecke algebras ℋr′, p′, n′(Q′), where 1 ≦ r′ ≦ r, 1 ≦ n′ ≦ n, p′ | p and where the parameters Q′ are contained in a single (ε′, q)-orbit and ε′ is a primitive p′th root of unity.
UR - http://www.scopus.com/inward/record.url?scp=62449159363&partnerID=8YFLogxK
U2 - 10.1515/CRELLE.2009.022
DO - 10.1515/CRELLE.2009.022
M3 - Article
AN - SCOPUS:62449159363
SN - 0075-4102
SP - 169
EP - 194
JO - Journal fur die Reine und Angewandte Mathematik
JF - Journal fur die Reine und Angewandte Mathematik
IS - 628
ER -