Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li-CO2 batteries

Siwu Li, Yuan Liu, Junwen Zhou*, Shanshan Hong, Yu Dong, Jiaming Wang, Xing Gao, Pengfei Qi, Yuzhen Han, Bo Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

134 引用 (Scopus)

摘要

Li-CO2 batteries have been developed in recent years, aiming to utilize CO2, a major cause of the greenhouse effect, as an effective energy storage medium. However, current Li-CO2 batteries still suffer from low energy efficiency, poor rate capability and short cycle life, demanding the design of more efficient CO2 cathodes. Herein, we synthesized ultrafine MnO nanoparticles dispersed in a graphene-interconnected N-doped 3D carbon framework, MnO@NC-G, by pyrolyzing a composite of a GO-wrapped metal-organic framework (MOF) containing Mn(ii) active sites as the cathode material for Li-CO2 batteries. This material can enable low voltage hysteresis (0.88 V at 50 mA g-1), high rate capability (up to 1 A g-1) and long cycle life (more than 200 cycles) in cells. By comparing MnO@NC-G with four other Mn(ii)-based cathodes, MnO@NC, parent Mn-MOF, MnO@KB and bulk MnO, we propose three key aspects for designing CO2 cathodes: (1) dispersed catalytic species, (2) fast electron transport, and (3) a robust interconnected network. We also found that the performance of a cycled MnO@NC-G cathode can be replenished simply by replacing the anode, indicating that the cell cycle life can be further extended with effective anode protection. Our findings here provide useful guidelines for improving the performance of Li-CO2 batteries, thus shedding light on the development of practical Li battery systems based on gaseous cathodes.

源语言英语
页(从-至)1046-1054
页数9
期刊Energy and Environmental Science
12
3
DOI
出版状态已出版 - 3月 2019

指纹

探究 'Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li-CO2 batteries' 的科研主题。它们共同构成独一无二的指纹。

引用此