TY - JOUR
T1 - Molecular design of energetic tetrazine-triazole derivatives
AU - Li, Yi
AU - Li, Yanyue
AU - Jin, Shaohua
AU - Li, Shengfu
AU - Chen, Kun
AU - Bao, Fang
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
PY - 2021/3
Y1 - 2021/3
N2 - Nitrogen-rich compounds are promising candidates for preparing high energetic density materials (HEDMs) and show the potential in the application of propellants, explosives, and pyrotechnics. Two kinds of typical nitrogen-rich compounds, such as tetrazine and triazole, have attracted the attentions in recent years owing to their high densities, good thermal stabilities, and excellent energetic performances. In this work, four series of innovative energetic compounds based on the conjugates of tetrazine and triazole bearing various substituents (–NH2, –NO2, and –NHNO2) were designed. The optimized structures, crystal densities, heats of formation (HOFs) in gas phase and in condensed phase, detonation properties, bond dissociation energies (BDEs), and impact sensitivity (h50) of these compounds were studied systematically via density functional theory (DFT) method. The detonation velocities of four series of compounds are in the range between 7.03 and 8.59 km s−1 and their detonation pressures are in the range between 20.6 and 33.1 GPa. Results indicated that the linkage of –N=N– bond contributed significantly to HOFs and energy density of the energetic molecules, and 1,2,3-triazole showed better performances than 1,2,4-triazole slightly. As for the same series compounds with different substituents, the compounds with –NHNO2 possessed the highest HOFs (such as A6, B6, C6, D6). In terms of the energetic properties (D and P), four compounds (A7, B7, C7, and D7) exhibited the comparable performance with the widely used hexa-hydro-1,3,5-trinitro-1,3,5-triazine (RDX) and in the meanwhile displayed superior thermal stability and sensitivity to RDX, which indicated their potential application in the insensitive energetic materials.
AB - Nitrogen-rich compounds are promising candidates for preparing high energetic density materials (HEDMs) and show the potential in the application of propellants, explosives, and pyrotechnics. Two kinds of typical nitrogen-rich compounds, such as tetrazine and triazole, have attracted the attentions in recent years owing to their high densities, good thermal stabilities, and excellent energetic performances. In this work, four series of innovative energetic compounds based on the conjugates of tetrazine and triazole bearing various substituents (–NH2, –NO2, and –NHNO2) were designed. The optimized structures, crystal densities, heats of formation (HOFs) in gas phase and in condensed phase, detonation properties, bond dissociation energies (BDEs), and impact sensitivity (h50) of these compounds were studied systematically via density functional theory (DFT) method. The detonation velocities of four series of compounds are in the range between 7.03 and 8.59 km s−1 and their detonation pressures are in the range between 20.6 and 33.1 GPa. Results indicated that the linkage of –N=N– bond contributed significantly to HOFs and energy density of the energetic molecules, and 1,2,3-triazole showed better performances than 1,2,4-triazole slightly. As for the same series compounds with different substituents, the compounds with –NHNO2 possessed the highest HOFs (such as A6, B6, C6, D6). In terms of the energetic properties (D and P), four compounds (A7, B7, C7, and D7) exhibited the comparable performance with the widely used hexa-hydro-1,3,5-trinitro-1,3,5-triazine (RDX) and in the meanwhile displayed superior thermal stability and sensitivity to RDX, which indicated their potential application in the insensitive energetic materials.
KW - Density functional theory
KW - Explosives
KW - HEDMs
KW - Nitrogen-rich compounds
KW - Tetrazine
KW - Triazole
UR - http://www.scopus.com/inward/record.url?scp=85101875899&partnerID=8YFLogxK
U2 - 10.1007/s00894-021-04714-3
DO - 10.1007/s00894-021-04714-3
M3 - Article
C2 - 33641021
AN - SCOPUS:85101875899
SN - 1610-2940
VL - 27
JO - Journal of Molecular Modeling
JF - Journal of Molecular Modeling
IS - 3
M1 - 98
ER -