TY - GEN
T1 - Modeling quantum entanglements in quantum language models
AU - Xie, Mengjiao
AU - Hou, Yuexian
AU - Zhang, Peng
AU - Li, Jingfei
AU - Li, Wenjie
AU - Song, Dawei
PY - 2015
Y1 - 2015
N2 - Recently, a Quantum Language Model (QLM) was proposed to model term dependencies upon Quantum Theory (QT) framework and successively applied in Information Retrieval (IR). Nevertheless, QLM's dependency is based on co-occurrences of terms and has not yet taken into account the Quantum Entanglement (QE), which is a key quantum concept and has a significant cognitive implication. In QT, an entangled state can provide a more complete description for the nature of realities, and determine intrinsic correlations of considered objects globally, rather than those co-occurrences on the surface. It is, however, a real challenge to decide and measure QE using the classical statistics of texts in a post-measurement configuration. In order to circumvent this problem, we theoretically prove the connection between QE and statistically Unconditional Pure Dependence (UPD). Since UPD has an implementable deciding algorithm, we can in turn characterize QE by extracting the UPD patterns from texts. This leads to a measurable QE, based on which we further advance the existing QLM framework. We empirically compare our model with related models, and the results demonstrate the effectiveness of our model.
AB - Recently, a Quantum Language Model (QLM) was proposed to model term dependencies upon Quantum Theory (QT) framework and successively applied in Information Retrieval (IR). Nevertheless, QLM's dependency is based on co-occurrences of terms and has not yet taken into account the Quantum Entanglement (QE), which is a key quantum concept and has a significant cognitive implication. In QT, an entangled state can provide a more complete description for the nature of realities, and determine intrinsic correlations of considered objects globally, rather than those co-occurrences on the surface. It is, however, a real challenge to decide and measure QE using the classical statistics of texts in a post-measurement configuration. In order to circumvent this problem, we theoretically prove the connection between QE and statistically Unconditional Pure Dependence (UPD). Since UPD has an implementable deciding algorithm, we can in turn characterize QE by extracting the UPD patterns from texts. This leads to a measurable QE, based on which we further advance the existing QLM framework. We empirically compare our model with related models, and the results demonstrate the effectiveness of our model.
UR - http://www.scopus.com/inward/record.url?scp=84949768072&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84949768072
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 1362
EP - 1368
BT - IJCAI 2015 - Proceedings of the 24th International Joint Conference on Artificial Intelligence
A2 - Wooldridge, Michael
A2 - Yang, Qiang
PB - International Joint Conferences on Artificial Intelligence
T2 - 24th International Joint Conference on Artificial Intelligence, IJCAI 2015
Y2 - 25 July 2015 through 31 July 2015
ER -