Model Free Adaptive Control Algorithm based on ReOSELM for Autonomous Driving Vehicles

Xiaofei Zhang, Hongbin Ma*, Zhichao Wang, Mingyu Fan, Bolin Zhao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Different road conditions and dynamic environment bring significant challenges to the control system of autonomous driving vehicle (ADV). As is known, historical data collected from ADV contains valuable information about control systems, therefore, it is a promising thing to study adaptive control algorithms that have certain learning ability. In order to improve the control performance of ADV and the efficiency in data usage, in this paper, a model free adaptive control algorithm based on regularized online sequential extreme learning machine (ReOSELM) is introduced, it is difficult to analyze the algorithm based on neural network, and the system stability by improved update algorithm of ReOSELM is proved. Simulation results indicate that the proposed algorithm is effective in improving control precision when ADV is turning, and experimental results on an autonomous driving vehicle show that this algorithm is effective in real environment.

源语言英语
主期刊名Proceedings of the 40th Chinese Control Conference, CCC 2021
编辑Chen Peng, Jian Sun
出版商IEEE Computer Society
3803-3809
页数7
ISBN(电子版)9789881563804
DOI
出版状态已出版 - 26 7月 2021
活动40th Chinese Control Conference, CCC 2021 - Shanghai, 中国
期限: 26 7月 202128 7月 2021

出版系列

姓名Chinese Control Conference, CCC
2021-July
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议40th Chinese Control Conference, CCC 2021
国家/地区中国
Shanghai
时期26/07/2128/07/21

指纹

探究 'Model Free Adaptive Control Algorithm based on ReOSELM for Autonomous Driving Vehicles' 的科研主题。它们共同构成独一无二的指纹。

引用此