MMS:Multi-Source Mutual Supervision Semantic Segmentation

Shibo Guo, Yuanyuan Gui, Mengmeng Zhang, Wei Li*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

How to use multi-source data for semantic segmentation is a hot topic. In this article, a new multi-source image data semantic segmentation based on multi-source mutual supervision (MMS) has been proposed. First, multi-source data from the same region are trained separately using identical segmentation networks for initialization; then, MMS performs mutual supervision training on these initialized networks, thus adaptively cooperating differences in information distribution between multiple sources of image data, and combines real label constraints output consistency across different networks. Experimental results demonstrate that the proposed MMS strategy can effectively coordinate information between multi-source data, improve segmentation accuracy, and is effective in different semantic segmentation networks and different types of data sets.

源语言英语
主期刊名IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
6928-6931
页数4
ISBN(电子版)9798350320107
DOI
出版状态已出版 - 2023
活动2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, 美国
期限: 16 7月 202321 7月 2023

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2023-July

会议

会议2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023
国家/地区美国
Pasadena
时期16/07/2321/07/23

指纹

探究 'MMS:Multi-Source Mutual Supervision Semantic Segmentation' 的科研主题。它们共同构成独一无二的指纹。

引用此