MLS3RDUH: Deep unsupervised hashing via manifold based local semantic similarity structure reconstructing

Rong Cheng Tu, Xian Ling Mao*, Wei Wei

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

67 引用 (Scopus)

摘要

Most of the unsupervised hashing methods usually map images into semantic similarity-preserving hash codes by constructing local semantic similarity structure as guiding information, i.e., treating each point similar to its k nearest neighbours. However, for an image, some of its k nearest neighbours may be dissimilar to it, i.e., they are noisy datapoints which will damage the retrieval performance. Thus, to tackle this problem, in this paper, we propose a novel deep unsupervised hashing method, called MLS3RDUH, which can reduce the noisy datapoints to further enhance retrieval performance. Specifically, the proposed method first defines a novel similarity matrix by utilising the intrinsic manifold structure in feature space and the cosine similarity of datapoints to reconstruct the local semantic similarity structure. Then a novel log-cosh hashing loss function is used to optimize the hashing network to generate compact hash codes by incorporating the defined similarity as guiding information. Extensive experiments on three public datasets show that the proposed method outperforms the state-of-the-art baselines.

源语言英语
主期刊名Proceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
编辑Christian Bessiere
出版商International Joint Conferences on Artificial Intelligence
3466-3472
页数7
ISBN(电子版)9780999241165
出版状态已出版 - 2020
活动29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, 日本
期限: 1 1月 2021 → …

出版系列

姓名IJCAI International Joint Conference on Artificial Intelligence
2021-January
ISSN(印刷版)1045-0823

会议

会议29th International Joint Conference on Artificial Intelligence, IJCAI 2020
国家/地区日本
Yokohama
时期1/01/21 → …

指纹

探究 'MLS3RDUH: Deep unsupervised hashing via manifold based local semantic similarity structure reconstructing' 的科研主题。它们共同构成独一无二的指纹。

引用此