摘要
In this study, nanostructured and conventional Yb2SiO5 coatings were prepared by atmospheric plasma. The microstructure and nanomechanical properties of these coatings were compared before and after heat treatment. The results show that the nanostructured Yb2SiO5 coatings have a mono-modal distribution, and the conventional Yb2SiO5 coatings have a bimodal distribution. Both types of coatings had improved nanomechanical properties after heat treatment. However, the increased elastic modulus and nanohardness of the nanostructured Yb2SiO5 coating were more apparent than those of the conventional Yb2SiO5 coatings. The nanostructured Yb2SiO5 coating had a higher elastic modulus than the conventional Yb2SiO5 coating, reflecting its high density. Subsequently, the microscopic morphology and micromechanical properties of the coatings were analyzed after heat treatment. Defects in the coatings, including pores, and microcracks, were significantly reduced with grain growth after thermal treatment, and the nanostructured Yb2SiO5 coatings had improved healing ability and micro-mechanical properties.
源语言 | 英语 |
---|---|
页(从-至) | 2666-2678 |
页数 | 13 |
期刊 | Journal of the American Ceramic Society |
卷 | 106 |
期 | 4 |
DOI | |
出版状态 | 已出版 - 4月 2023 |