TY - JOUR
T1 - Microstructure and Mechanical Properties of High-Strength, Low-Alloy Steel Thin-Wall Fabricated with Wire and Arc Additive Manufacturing
AU - Song, Kaijie
AU - Lin, Zidong
AU - Fa, Yongzhe
AU - Zhao, Xuefeng
AU - Zhu, Ziqian
AU - Ya, Wei
AU - Sun, Zhen
AU - Yu, Xinghua
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/4
Y1 - 2023/4
N2 - High-strength, low-alloy (HSLA) steel has attracted much attention in the manufacturing industry because of its good combination of high strength and toughness, low cost, and good formability. Wire and arc additive manufacturing (WAAM) technology can realize the rapid prototyping of HSLA steel parts. This study investigated a 26-layer HSLA steel component fabricated with the WAAM technique. The microstructure of the deposited wall of ER120S-G is mainly acicular ferrite, and there are longitudinal, preferentially growing dendrites along the deposition direction. With the deposition height accumulation, the top sample’s interlayer temperature increases and the amount of acicular ferrite in the microstructure decreases, while the amount of quasi-polygonal ferrite, Widmanstatten ferrite increases. The changes in microhardness were consistent with the corresponding microstructure gradients: the microhardness of the top sample showed a decreasing trend along the deposition direction, while the microhardness of the middle sample was uniform and stable. The present work shows that the mechanical properties of HSLA steel parts deposited using WAAM technology have good strength and toughness. The microstructure gradient of the sample along the deposition direction did not lead to a significant difference in the tensile strength of the sample at different heights. On the contrary, the ductility of the longitudinal sample is slightly lower than that of the transverse sample, indicating some anisotropy in the deposited sample, which is related to the directional growth of grains along the direction of heat flow. From the current work, the thin wall of HSLA steel prepared with the WAAM process has good mechanical properties, which indicates that it is feasible to replace the traditional processing method with the WAAM process to rapidly manufacture an HSLA steel structure meeting the performance requirements.
AB - High-strength, low-alloy (HSLA) steel has attracted much attention in the manufacturing industry because of its good combination of high strength and toughness, low cost, and good formability. Wire and arc additive manufacturing (WAAM) technology can realize the rapid prototyping of HSLA steel parts. This study investigated a 26-layer HSLA steel component fabricated with the WAAM technique. The microstructure of the deposited wall of ER120S-G is mainly acicular ferrite, and there are longitudinal, preferentially growing dendrites along the deposition direction. With the deposition height accumulation, the top sample’s interlayer temperature increases and the amount of acicular ferrite in the microstructure decreases, while the amount of quasi-polygonal ferrite, Widmanstatten ferrite increases. The changes in microhardness were consistent with the corresponding microstructure gradients: the microhardness of the top sample showed a decreasing trend along the deposition direction, while the microhardness of the middle sample was uniform and stable. The present work shows that the mechanical properties of HSLA steel parts deposited using WAAM technology have good strength and toughness. The microstructure gradient of the sample along the deposition direction did not lead to a significant difference in the tensile strength of the sample at different heights. On the contrary, the ductility of the longitudinal sample is slightly lower than that of the transverse sample, indicating some anisotropy in the deposited sample, which is related to the directional growth of grains along the direction of heat flow. From the current work, the thin wall of HSLA steel prepared with the WAAM process has good mechanical properties, which indicates that it is feasible to replace the traditional processing method with the WAAM process to rapidly manufacture an HSLA steel structure meeting the performance requirements.
KW - high-strength
KW - low-alloy steels
KW - mechanical properties
KW - microstructure evolution
KW - wire and arc additive manufacturing (WAAM)
UR - http://www.scopus.com/inward/record.url?scp=85156175151&partnerID=8YFLogxK
U2 - 10.3390/met13040764
DO - 10.3390/met13040764
M3 - Article
AN - SCOPUS:85156175151
SN - 2075-4701
VL - 13
JO - Metals
JF - Metals
IS - 4
M1 - 764
ER -