摘要
Traditional monocular vision localization methods are usually suitable for short-range area and indoor relative positioning tasks. This paper presents MGG, a novel monocular global geolocation method for outdoor long-range targets. This method takes a single RGB image combined with necessary navigation parameters as input and outputs targets' GPS information under the Global Navigation Satellite System (GNSS). In MGG, we first design a camera pose correction method via pixel mapping to correct the pose of the camera. Then, we use anchor-based methods to improve the detection ability for long-range targets with small image regions. Next, the local monocular vision model (LMVM) with a local structure coefficient is proposed to establish an accurate 2D-to-3D mapping relationship. Subsequently, a soft correspondence constraint (SCC) is presented to solve the local structure coefficient, which can weaken the coupling degree between detection and localization. Finally, targets can be geolocated through optimization theory-based methods and a series of coordinate transformations. Furthermore, we demonstrate the importance of focal length on solving the error explosion problem in locating long-range targets with monocular vision. Extensive experiments on the challenging KITTI dataset as well as applications in outdoor environments with targets located at a long range of up to 150 meters show the superiority of our method.
源语言 | 英语 |
---|---|
文章编号 | 9477086 |
页(从-至) | 6349-6363 |
页数 | 15 |
期刊 | IEEE Transactions on Image Processing |
卷 | 30 |
DOI | |
出版状态 | 已出版 - 2021 |