Metric entropies of sets in abstract Wiener space

Xicheng Zhang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 2
  • Captures
    • Readers: 2
see details

摘要

Let (X, H μ) be an abstract Wiener space, E (ε, K) denote the metric entropy of a set K ⊂ X. If K is not a slim set, then we prove that 0 < lim inf ε→0 ε2 E(ε). In particular, if lim inf3→0 ε2E (ε, K) = 0, then K is a slim set. Moreover, if K is compact and contained in the closure of B0H (R) in X, where B0H := {h ∈ H: ∥h∥H < R} is a ball in H, then lim supε→0 ε2 E(ε, K) < ∞.

源语言英语
页(从-至)559-566
页数8
期刊Bulletin des Sciences Mathematiques
129
7
DOI
出版状态已出版 - 8月 2005
已对外发布

指纹

探究 'Metric entropies of sets in abstract Wiener space' 的科研主题。它们共同构成独一无二的指纹。

引用此

Zhang, X. (2005). Metric entropies of sets in abstract Wiener space. Bulletin des Sciences Mathematiques, 129(7), 559-566. https://doi.org/10.1016/j.bulsci.2005.02.002