Metric entropies of sets in abstract Wiener space

Xicheng Zhang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Let (X, H μ) be an abstract Wiener space, E (ε, K) denote the metric entropy of a set K ⊂ X. If K is not a slim set, then we prove that 0 < lim inf ε→0 ε2 E(ε). In particular, if lim inf3→0 ε2E (ε, K) = 0, then K is a slim set. Moreover, if K is compact and contained in the closure of B0H (R) in X, where B0H := {h ∈ H: ∥h∥H < R} is a ball in H, then lim supε→0 ε2 E(ε, K) < ∞.

源语言英语
页(从-至)559-566
页数8
期刊Bulletin des Sciences Mathematiques
129
7
DOI
出版状态已出版 - 8月 2005
已对外发布

指纹

探究 'Metric entropies of sets in abstract Wiener space' 的科研主题。它们共同构成独一无二的指纹。

引用此