摘要
Let (X, H μ) be an abstract Wiener space, E (ε, K) denote the metric entropy of a set K ⊂ X. If K is not a slim set, then we prove that 0 < lim inf ε→0 ε2 E(ε). In particular, if lim inf3→0 ε2E (ε, K) = 0, then K is a slim set. Moreover, if K is compact and contained in the closure of B0H (R) in X, where B0H := {h ∈ H: ∥h∥H < R} is a ball in H, then lim supε→0 ε2 E(ε, K) < ∞.
源语言 | 英语 |
---|---|
页(从-至) | 559-566 |
页数 | 8 |
期刊 | Bulletin des Sciences Mathematiques |
卷 | 129 |
期 | 7 |
DOI | |
出版状态 | 已出版 - 8月 2005 |
已对外发布 | 是 |
指纹
探究 'Metric entropies of sets in abstract Wiener space' 的科研主题。它们共同构成独一无二的指纹。引用此
Zhang, X. (2005). Metric entropies of sets in abstract Wiener space. Bulletin des Sciences Mathematiques, 129(7), 559-566. https://doi.org/10.1016/j.bulsci.2005.02.002