TY - JOUR
T1 - Metal-Organic Frameworks Derived Porous Carbons
T2 - Syntheses, Porosity and Gas Sorption Properties
AU - Pei, Xiaokun
AU - Chen, Yifa
AU - Li, Siqing
AU - Zhang, Shenghan
AU - Feng, Xiao
AU - Zhou, Junwen
AU - Wang, Bo
N1 - Publisher Copyright:
Copyright © 2016 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2016/2/1
Y1 - 2016/2/1
N2 - Porous carbon materials derived from metal-organic frameworks (MOFs) have been brought into stage due to the intrinsic advantages of MOFs such as high porosity and tailorable structure diversity, which might provide infinite possibility in producing porous carbons with diverse structures and various decorations. Inherited from MOFs, the porosity in carbon materials is an important factor to evaluate the performances of porous carbons (e.g. gas sorption properties, electrochemical and catalytic behaviors). Factors that affect the porosity of porous carbon materials are mainly focused on the porosity of pristine MOFs, additives and conducting conditions. However, during past decades there were still no systematical reports on the influence factors of porosity in MOFs derived porous carbon materials and corresponding gas sorption properties. In this review, we will summarize the performances of MOF-derived carbon materials (i.e. non-doped porous carbons, heteroatoms doped porous carbons, metal/metal oxide decorated porous carbons) and give a detailed discussion about the connections between the properties and four major effects (calcination temperature, loading of additional precursor, post-synthetic treatment as well as intrinsic properties of MOFs). Porous carbon materials derived from metal-organic frameworks (MOFs) have been brought into stage due to the intrinsic advantages of MOFs such as high porosity and tailorable structure diversity, which might provide infinite possibility in producing porous carbons with diverse structures and various decorations. In this review, we summarize the performances of MOF-derived carbon materials (i.e. non-doped porous carbons, heteroatoms doped porous carbons, metal/metal oxide decorated porous carbons) and give a detailed discussion about the connections between the properties and four major effects (calcination temperature, loading of additional precursor, post-synthetic treatment as well as intrinsic properties of MOFs).
AB - Porous carbon materials derived from metal-organic frameworks (MOFs) have been brought into stage due to the intrinsic advantages of MOFs such as high porosity and tailorable structure diversity, which might provide infinite possibility in producing porous carbons with diverse structures and various decorations. Inherited from MOFs, the porosity in carbon materials is an important factor to evaluate the performances of porous carbons (e.g. gas sorption properties, electrochemical and catalytic behaviors). Factors that affect the porosity of porous carbon materials are mainly focused on the porosity of pristine MOFs, additives and conducting conditions. However, during past decades there were still no systematical reports on the influence factors of porosity in MOFs derived porous carbon materials and corresponding gas sorption properties. In this review, we will summarize the performances of MOF-derived carbon materials (i.e. non-doped porous carbons, heteroatoms doped porous carbons, metal/metal oxide decorated porous carbons) and give a detailed discussion about the connections between the properties and four major effects (calcination temperature, loading of additional precursor, post-synthetic treatment as well as intrinsic properties of MOFs). Porous carbon materials derived from metal-organic frameworks (MOFs) have been brought into stage due to the intrinsic advantages of MOFs such as high porosity and tailorable structure diversity, which might provide infinite possibility in producing porous carbons with diverse structures and various decorations. In this review, we summarize the performances of MOF-derived carbon materials (i.e. non-doped porous carbons, heteroatoms doped porous carbons, metal/metal oxide decorated porous carbons) and give a detailed discussion about the connections between the properties and four major effects (calcination temperature, loading of additional precursor, post-synthetic treatment as well as intrinsic properties of MOFs).
KW - adsorption
KW - carbonization
KW - metal-organic frameworks
KW - porous carbon
KW - surface area
UR - http://www.scopus.com/inward/record.url?scp=84958752491&partnerID=8YFLogxK
U2 - 10.1002/cjoc.201500760
DO - 10.1002/cjoc.201500760
M3 - Review article
AN - SCOPUS:84958752491
SN - 1001-604X
VL - 34
SP - 157
EP - 174
JO - Chinese Journal of Chemistry
JF - Chinese Journal of Chemistry
IS - 2
ER -