TY - JOUR
T1 - Metal-Determined Explosive Characteristics of M(NO3)2(1-AT)x of Thermal and Laser Ignition (M2+ = Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+; x = 2 or 3)
AU - Bu, Shu
AU - Zhang, Jianguo
AU - Wang, Kun
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024/2/19
Y1 - 2024/2/19
N2 - Optical and thermal ignition are two common pathways to initiate the explosion of primary explosives, where laser ignition is a more reliable and safer initiation method. Caused by the current-applied laser igniter with the wavelength of 1064 or 915 nm, the energetic complexes with strong absorption in the near-infrared (NIR) region are possibly applied as laser-ignited explosives. Recently, [Cu(NO3)2(1-AT)3] complex has been synthesized with excellent NIR absorption properties, where 1-amino-5H-tetrazole (1-AT) has been proved to be a promising laser-ignited energetic ligand. To confirm the structure-thermal/optical explosive characteristics, based on the structure of synthesized [Cu(NO3)2(1-AT)3], the commonly used transition-metal cations (M2+ = Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) have been selected to construct the series of complexes of M(NO3)2(1-AT)x (x = 2 or 3) theoretically. Car-Parrinello molecular dynamics (CPMD) method has been applied to unveil the role of center metals in the initiation and growth pathways. Time-dependent density functional theory (TD-DFT) method is used to explore their charge-transfer (CT) characteristics. The optical characteristic of the metal complex is mainly determined by the behaviors of the 3d electrons of center metals in excitation, where the activity of β-d electrons is an important factor to affect the NIR characteristic of complexes.
AB - Optical and thermal ignition are two common pathways to initiate the explosion of primary explosives, where laser ignition is a more reliable and safer initiation method. Caused by the current-applied laser igniter with the wavelength of 1064 or 915 nm, the energetic complexes with strong absorption in the near-infrared (NIR) region are possibly applied as laser-ignited explosives. Recently, [Cu(NO3)2(1-AT)3] complex has been synthesized with excellent NIR absorption properties, where 1-amino-5H-tetrazole (1-AT) has been proved to be a promising laser-ignited energetic ligand. To confirm the structure-thermal/optical explosive characteristics, based on the structure of synthesized [Cu(NO3)2(1-AT)3], the commonly used transition-metal cations (M2+ = Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) have been selected to construct the series of complexes of M(NO3)2(1-AT)x (x = 2 or 3) theoretically. Car-Parrinello molecular dynamics (CPMD) method has been applied to unveil the role of center metals in the initiation and growth pathways. Time-dependent density functional theory (TD-DFT) method is used to explore their charge-transfer (CT) characteristics. The optical characteristic of the metal complex is mainly determined by the behaviors of the 3d electrons of center metals in excitation, where the activity of β-d electrons is an important factor to affect the NIR characteristic of complexes.
UR - http://www.scopus.com/inward/record.url?scp=85185404251&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.3c03076
DO - 10.1021/acs.inorgchem.3c03076
M3 - Article
C2 - 38321870
AN - SCOPUS:85185404251
SN - 0020-1669
VL - 63
SP - 3212
EP - 3220
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 7
ER -