TY - JOUR
T1 - Mechanochemistry-induced biaxial compressive strain engineering in MXenes for boosting lithium storage kinetics
AU - Wang, Jie
AU - Hu, Yingjie
AU - Yang, Baifeng
AU - Wang, Xin
AU - Qin, Jinwen
AU - Cao, Minhua
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/9
Y1 - 2021/9
N2 - Strain modulation can endow electrochemical materials with promising mechano-electrochemical coupling owing to its adjustable characteristics, which will unlock great potential for realizing high-performance energy storage. MXenes offer outstanding lithium storage performances due to their exceptional conductivity, excellent mechanical properties, and large interlayer spaces for ion intercalation, however an undesirable issue of sluggish kinetics caused by the restacking of MXene nanosheets in electrodes is not well addressed. Here, we demonstrate an extremely effective strategy to resolve this issue by creating strain in Ti3C2Tx MXene via mechanochemistry (MC) method to maximize ion-transfer kinetics for lithium-ion batteries (LIBs). Strain states in Ti3C2Tx MXene, namely out-of-plane tension and corresponding in-plane biaxial compression, are comprehensively assessed through X-ray diffraction, Raman spectroscopy, and extended X-ray absorption fine structure spectroscopy. Diverse experimental characterizations and density functional theory calculations both reveal that the mechanochemistry-induced strained Ti3C2Tx (MC-Ti3C2Tx) MXene exhibits significantly decreased lithium diffusion barrier, which correlates directly to the observed fast ion-transfer kinetics. As expected, MC-Ti3C2Tx electrode delivers a high discharge capacity (380.5 mAh g−1 at 0.1 A g−1) and superior rate capability, outperforming most of previously reported Ti3C2Tx. More importantly, with the remarkably enhanced ion-transfer kinetics, MC-Ti3C2Tx electrode exhibits outstanding lithium storage performances spanning a wide temperature range (40 °C to − 20 °C). This work paves a novel way of strain engineering of MXenes for effectively enhancing diffusion kinetics in LIBs.
AB - Strain modulation can endow electrochemical materials with promising mechano-electrochemical coupling owing to its adjustable characteristics, which will unlock great potential for realizing high-performance energy storage. MXenes offer outstanding lithium storage performances due to their exceptional conductivity, excellent mechanical properties, and large interlayer spaces for ion intercalation, however an undesirable issue of sluggish kinetics caused by the restacking of MXene nanosheets in electrodes is not well addressed. Here, we demonstrate an extremely effective strategy to resolve this issue by creating strain in Ti3C2Tx MXene via mechanochemistry (MC) method to maximize ion-transfer kinetics for lithium-ion batteries (LIBs). Strain states in Ti3C2Tx MXene, namely out-of-plane tension and corresponding in-plane biaxial compression, are comprehensively assessed through X-ray diffraction, Raman spectroscopy, and extended X-ray absorption fine structure spectroscopy. Diverse experimental characterizations and density functional theory calculations both reveal that the mechanochemistry-induced strained Ti3C2Tx (MC-Ti3C2Tx) MXene exhibits significantly decreased lithium diffusion barrier, which correlates directly to the observed fast ion-transfer kinetics. As expected, MC-Ti3C2Tx electrode delivers a high discharge capacity (380.5 mAh g−1 at 0.1 A g−1) and superior rate capability, outperforming most of previously reported Ti3C2Tx. More importantly, with the remarkably enhanced ion-transfer kinetics, MC-Ti3C2Tx electrode exhibits outstanding lithium storage performances spanning a wide temperature range (40 °C to − 20 °C). This work paves a novel way of strain engineering of MXenes for effectively enhancing diffusion kinetics in LIBs.
KW - Biaxial compression
KW - Ion-transfer kinetics
KW - Li-ion batteries
KW - MXene
KW - Strain engineering
UR - http://www.scopus.com/inward/record.url?scp=85106599881&partnerID=8YFLogxK
U2 - 10.1016/j.nanoen.2021.106053
DO - 10.1016/j.nanoen.2021.106053
M3 - Article
AN - SCOPUS:85106599881
SN - 2211-2855
VL - 87
JO - Nano Energy
JF - Nano Energy
M1 - 106053
ER -